Exogenous silicon has been shown to enhance plant growth and alleviate heavy metals toxicity, but the regulation mechanism of silicon on cadmium migration and transformation in the soil-rice system is still unclear, which is worth further study. In this study, a pot experiment was carried out to explore the influence of different doses (0, 1 and 5%) of mineral silicon on soil properties, nutrient availability, rice growth, soil enzyme activities, Cd bioavailability, and uptake and accumulation of Cd in high-accumulating (H) and low-accumulating (L) rice cultivars grown in contaminated soils. Results showed that mineral-Si treatment could increase the total biomass and grain yield, with an increased rate of 17.7-27.3% and 14.7-19.1% for H; while 26.2-33.4% and 21.3-30.3% for L. Compared with non-mineral-Si treatment, the soil EX-Cd decreased by 3.9-13.3% (H) and 2.3-10.7% (L). Additionally, the Cd content in rice grain was significantly declined by 29.5-31.3% (H) and 34.9-35.2% (L). Mineral-Si enhanced urease, sucrase, and neutral phosphatase activities in both cultivars, but suppressed catalase activity in H. A selective change in bacterial community structure was observed under mineral-Si treatment, however, the bacterial community remained stable, suggesting that the mineral-Si had no adverse effect on the microbial community. The positive response of soil enzymes activities, rice growth and the overall stabilization of microbial environment for mineral-Si addition to the Cd contaminated soils indicated that mineral-Si could mitigate the risk of Cd and well maintain the soil health, proving it to be eco-friendly and low-cost amendment for soils remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143501DOI Listing

Publication Analysis

Top Keywords

mineral silicon
8
silicon cadmium
8
cadmium migration
8
migration transformation
8
transformation soil-rice
8
soil-rice system
8
soil health
8
rice growth
8
contaminated soils
8
mineral-si treatment
8

Similar Publications

To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

Physicochemical properties and biological interaction of calcium silicate-based sealers - in vivo model.

Clin Oral Investig

January 2025

Department of Restorative Dentistry - Endodontics, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.

Objectives: To investigate volumetric changes, in vivo biocompatibility, and systemic migration from eight commercial endodontic sealer materials in paste/paste, powder/liquid, and pre-mixed forms.

Materials And Methods: The sealers AH Plus Bioceramic, AH Plus Jet, BioRoot RCS, MTApex, Bio-C Sealer, Bio-C Sealer Ion+, EndoSequence BC Sealer and NeoSEALER Flo were studied. After characterisation by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and X-ray diffractometry (XRD), tubes were implanted in Wistar rats' alveolar bone and subcutaneous tissues.

View Article and Find Full Text PDF

The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge.

View Article and Find Full Text PDF

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!