Atmospheric iodine, selenium and caesium depositions in France: II. Influence of forest canopies.

Chemosphere

CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Avenue du Président Angot, 64000, Pau, France. Electronic address:

Published: June 2021

Estimation of the canopy influence on atmospheric inputs of iodine (I), selenium (Se) and caesium (Cs) in terrestrial ecosystems is an essential condition for appropriate biogeochemical models. However, the processes involved in rain composition modifications after its passage through forest canopy have been barely studied for these elements. We monitored I, Se and Cs concentrations in both rainfall and throughfall of fourteen French forested sites throughout one year, and estimated dry deposition and canopy exchange fluxes for these elements, as well as speciation of I and Se. Comparison of rainfall and throughfall elemental composition highlighted an important impact of forest canopy on both (i) concentrations and fluxes of I, Se and Cs, and (ii) I and Se species. For the three elements, most of their throughfall concentrations were higher than corresponding rainfall. The increase of throughfall elemental fluxes was mostly due to dry deposition for I and Se although the canopy exchange model revealed some sorption within the canopy in most cases; for Cs, foliage leaching was most influencing. Regarding speciation, iodine species in rainfall were highly modified by forest canopy with an important increase of unidentified I proportion in throughfall (on average 49 and 82% in rainfall and throughfall, respectively), possibly due to washoff of dry deposition and/or to transformation into organic forms. Similarly, while rainfall was composed of 26-54% of inorganic Se, inorganic species were undetectable in throughfall. This dataset represents key information to improve modelling of I, Se and Cs cycling within forest ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128952DOI Listing

Publication Analysis

Top Keywords

forest canopy
12
rainfall throughfall
12
dry deposition
12
iodine selenium
8
selenium caesium
8
deposition canopy
8
canopy exchange
8
throughfall elemental
8
canopy
7
throughfall
7

Similar Publications

Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.

View Article and Find Full Text PDF

Plant-plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species.

View Article and Find Full Text PDF

Chlorophyll and topographic patterns demonstrate stress conditions drive the brightness of autumn leaf colour.

Plant Biol (Stuttg)

December 2024

Echigo-Matsunoyama Museum of Natural Science 'Kyororo', Tokamachi, Niigata, Japan.

Autumn leaf colour brightness is an important cultural ecosystem service. As its spatial patterns and ecophysiological mechanisms remain unclear, we analysed relationships among autumn leaf colour brightness, late summer chlorophyll content, and topographic position in both canopy-based micro-scale analysis and site-based macro-scale analysis. Multispectral drone observations were made in three Fagus crenata forests at elevations of 300, 600, and 900 m in Niigata Prefecture, Japan.

View Article and Find Full Text PDF

Contrasting environmental drivers of tree community variation within heath forests in Brunei Darussalam, Borneo.

Biodivers Data J

December 2024

Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam Bandar Seri Begawan Brunei.

Understanding how abiotic factors influence Bornean tropical tree communities and diversity is a key aspect in elucidating the mechanisms of species co-existence and habitat preferences in these biodiverse forests. We focused on investigating forest structure, tree diversity and community composition of lowland Bornean heath forests in Brunei Darussalam, within two 0.96 ha permanent forest plots at Bukit Sawat Forest Reserve and Badas Forest Reserve.

View Article and Find Full Text PDF

Landscape influences bat suppression of pine processionary moth: Implications for pest management.

J Environ Manage

December 2024

CE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.

Bats provide important ecosystem services, particularly in agriculture, yet integrating bat management into conservation plans remains challenging. Some landscape features considerably influence bat presence, diversity, and ecosystem service provision. Understanding the relationship between landscape structure, composition, pest suppression, and ecosystem services is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!