Comparison of physiological functions between neuromedin U-related peptide and neuromedin S-related peptide in the rat central nervous system.

Biochem Biophys Res Commun

Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan.

Published: January 2021

Two novel peptides, neuromedin U precursor-related peptide (NURP) and neuromedin S precursor-related peptide (NSRP), are produced from neuromedin U (NMU) and neuromedin S (NMS) precursors, respectively, as these precursors have multiple consensus sequences for proteolytic processing. Our group has shown previously that one of these two novel peptides, NURP, stimulates body temperature and locomotor activity, but not food intake. However, the physiological function of the other peptide, NSRP, has remained unclear. Therefore, the aim of this study was to characterize differences in the regions of the rat brain targeted by the NMU/NMS peptide family, including NURP and NSRP, and their physiological functions. First, we explored the regions of c-Fos expression after intracerebroventricular (i.c.v.) injection of NURP and NSRP and found that these were fewer than after i.c.v. injection of NMU and NMS in the hypothalamus, possibly because NURP and NSRP cannot activate NMU/NMS receptors. In the ventral subiculum, which is one region of the hippocampus, c-Fos expression was evident only after i.c.v. injection of NURP. We also examined the effects of NSRP on food intake, body temperature and locomotor activity. Like NURP, NSRP increased both body temperature and locomotor activity, but not food intake, indicating that NSRP is also a functional peptide. However, these effects of NSRP were distinctly weaker than those of NURP. These findings suggest differences in the affinity of NURP and/or NSRP for specific receptors, or in their respective biological activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.11.025DOI Listing

Publication Analysis

Top Keywords

nurp nsrp
16
body temperature
12
temperature locomotor
12
locomotor activity
12
food intake
12
icv injection
12
nsrp
10
nurp
9
physiological functions
8
novel peptides
8

Similar Publications

Neuromedins NMU and NMS: An Updated Overview of Their Functions.

Front Endocrinol (Lausanne)

February 2022

Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.

More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally.

View Article and Find Full Text PDF

Comparison of physiological functions between neuromedin U-related peptide and neuromedin S-related peptide in the rat central nervous system.

Biochem Biophys Res Commun

January 2021

Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan.

Two novel peptides, neuromedin U precursor-related peptide (NURP) and neuromedin S precursor-related peptide (NSRP), are produced from neuromedin U (NMU) and neuromedin S (NMS) precursors, respectively, as these precursors have multiple consensus sequences for proteolytic processing. Our group has shown previously that one of these two novel peptides, NURP, stimulates body temperature and locomotor activity, but not food intake. However, the physiological function of the other peptide, NSRP, has remained unclear.

View Article and Find Full Text PDF

The discovery of neuropeptides provides insights into the regulation of physiological processes. The precursor for the neuropeptide neuromedin U contains multiple consensus sequences for proteolytic processing, suggesting that this precursor might generate additional peptides. We performed immunoaffinity chromatography of rat brain extracts and consequently identified such a product, which we designated neuromedin U precursor-related peptide (NURP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!