A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of main malaria vectors and their insecticide resistance profile in internally displaced and indigenous communities in Eastern Democratic Republic of the Congo (DRC). | LitMetric

Background: Malaria remains a major public health concern in the Democratic Republic of the Congo (DRC) and its control is affected by recurrent conflicts. Médecins Sans Frontières (MSF) initiated several studies to better understand the unprecedented incidence of malaria to effectively target and implement interventions in emergency settings. The current study evaluated the main vector species involved in malaria transmission and their resistance to insecticides, with the aim to propose the most effective tools and strategies for control of local malaria vectors.

Methods: This study was performed in 52 households in Shamwana (Katanga, 2014), 168 households in Baraka (South Kivu, 2015) and 269 households in Kashuga (North Kivu, 2017). Anopheles vectors were collected and subjected to standardized Word Health Organization (WHO) and Center for Disease Control (CDC) insecticide susceptibility bioassays. Mosquito species determination was done using PCR and Plasmodium falciparum infection in mosquitoes was assessed by ELISA targeting circumsporozoite protein.

Results: Of 3517 Anopheles spp. mosquitoes collected, Anopheles gambiae sensu lato (s.l.) (29.6%) and Anopheles funestus (69.1%) were the main malaria vectors. Plasmodium falciparum infection rates for An. gambiae s.l. were 1.0, 2.1 and 13.9% for Shamwana, Baraka and Kashuga, respectively. Anopheles funestus showed positivity rates of 1.6% in Shamwana and 4.4% in Baraka. No An. funestus were collected in Kashuga. Insecticide susceptibility tests showed resistance development towards pyrethroids in all locations. Exposure to bendiocarb, malathion and pirimiphos-methyl still resulted in high mosquito mortality.

Conclusions: This is one of only few studies from these conflict areas in DRC to report insecticide resistance in local malaria vectors. The data suggest that current malaria prevention methods in these populations are only partially effective, and require additional tools and strategies. Importantly, the results triggered MSF to consider the selection of a new insecticide for indoor residual spraying (IRS) and a new long-lasting insecticide-treated net (LLIN). The reinforcement of correct usage of LLINs and the introduction of targeted larviciding were also included as additional vector control tools as a result of the studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7684733PMC
http://dx.doi.org/10.1186/s12936-020-03497-xDOI Listing

Publication Analysis

Top Keywords

malaria vectors
12
malaria
8
main malaria
8
insecticide resistance
8
democratic republic
8
republic congo
8
congo drc
8
tools strategies
8
local malaria
8
insecticide susceptibility
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!