Background and purpose - The distal part of the vastus medialis muscle is an important stabilizer for the patella. Thus, knowledge of the intramuscular nerve course and branching pattern is important to estimate whether the muscle's innervation is at risk if splitting the muscle. We determined the intramuscular course of the nerve branches supplying the distal part of the vastus medialis muscle to identify the surgical approach that best preserves its innervation.Material and methods - 8 vastus medialis muscles from embalmed anatomic specimens underwent Sihler's procedure to make soft tissue translucent while staining the nerves to study their intramuscular course. After dissection under transillumination using magnification glasses all nerve branches were evaluated.Results - The terminal nerve branches were located in different layers of the muscle and ran mostly parallel but also transverse to the muscle fibers. In half of the cases, the latter formed 1 to 3 anastomoses and coursed close to the myotendinous junction. Additionally, most of the branches extended into the ventromedial part of the knee joint capsule.Interpretation - To preserve the innervation of the distal part of the vastus medialis muscle, any split of the muscle during surgical approaches to the knee joint should be avoided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158273PMC
http://dx.doi.org/10.1080/17453674.2020.1851459DOI Listing

Publication Analysis

Top Keywords

vastus medialis
20
distal vastus
16
medialis muscle
16
nerve branches
12
muscle
9
innervation distal
8
splitting muscle
8
muscle fibers
8
intramuscular course
8
knee joint
8

Similar Publications

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

: The aim of this study is to determine whether different playing positions in football influence muscle asymmetry, which is a common cause of injuries in football. This study aimed to determine the difference in the functional and lateral asymmetry of the knee joint muscles measured using tensiomyography (TMG) between football players of different playing positions. : This study included 52 professional football players (25.

View Article and Find Full Text PDF

Background: Persistent maladaptive changes of corticospinal tract (CST) and quadriceps strength deficits exist in patients with anterior cruciate ligament reconstruction (ACLR). This study aimed to investigate the relationships between the structural alterations of CST and quadriceps muscle strength deficits in patients with ACLR.

Methods: Twenty-nine participants who had undergone unilateral ACLR (29 males; age = 32.

View Article and Find Full Text PDF

Background: Ankle sprains often result in muscle atrophy and reduced range of motion, which can cause long-term ankle instabilities. Understanding the changes to muscle-such as atrophy-and concomitant changes to deep fascia-which may thicken alongside muscle loss-after ankle sprain injury is important to understanding structural changes about the joint and how they might contribute to longer-term impairments. Here, we employ advanced MRI to investigate skeletal muscle and fascial structural changes during the recovery period of one patient undergoing immobilization after ankle sprains.

View Article and Find Full Text PDF

Introduction: Chondromalacia patella (CMP) is characterized by cartilage degeneration, affects young adults, more women (2:1) and is responsible for 75% of knee pain complaints in the active population. The etiology is multifactorial and may be related to extrinsic factors (trauma and burden) and intrinsic factors (patellar malalignment and quadriceps weakness). Isokinetic dynamometry (ID) can aid in the detection of the causal factors of knee pain related to CMP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!