Genomic selection (GS) is a breeding method that uses marker-trait models to predict unobserved phenotypes. This study developed GS models for predicting traits associated with resistance to Fusarium head blight (FHB) in wheat (Triticum aestivum L.). We used genotyping-by-sequencing (GBS) to identify 5054 single-nucleotide polymorphisms (SNPs), which were then treated as predictor variables in GS analysis. We compared how the prediction accuracy of the genomic-estimated breeding values (GEBVs) was affected by (i) five genotypic imputation methods (random forest imputation [RFI], expectation maximization imputation [EMI], k-nearest neighbor imputation [kNNI], singular value decomposition imputation [SVDI], and the mean imputation [MNI]); (ii) three statistical models (ridge-regression best linear unbiased predictor [RR-BLUP], least absolute shrinkage and operator selector [LASSO], and elastic net); (iii) marker density (p = 500, 1500, 3000, and 4500 SNPs); (iv) training population (TP) size (n = 96, 144, 192, and 218); (v) marker-based and pedigree-based relationship matrices; and (vi) control for relatedness in TPs and validation populations (VPs). No discernable differences in prediction accuracy were observed among imputation methods. The RR-BLUP outperformed other models in nearly all scenarios. Accuracies decreased substantially when marker number decreased to 3000 or 1500 SNPs, depending on the trait; when sample size of the training set was less than 192; when using pedigree-based instead of marker-based matrix; or when no control for relatedness was implemented. Overall, moderate to high prediction accuracies were observed in this study, suggesting that GS is a very promising breeding strategy for FHB resistance in wheat.

Download full-text PDF

Source
http://dx.doi.org/10.3835/plantgenome2015.01.0003DOI Listing

Publication Analysis

Top Keywords

genomic selection
8
fusarium head
8
head blight
8
resistance wheat
8
prediction accuracy
8
imputation methods
8
control relatedness
8
imputation
7
selection predicting
4
predicting fusarium
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!