Investigation of 2D Rainbow Metamaterials for Broadband Vibration Attenuation.

Materials (Basel)

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Published: November 2020

Phononic crystals (PnCs) and metamaterials are widely investigated for vibration suppression owing to the bandgaps, within which, wave propagation is prohibited or the attenuation level is above requirements. The application of PnCs and metamaterials is, however, limited by the widths of bandgaps. The recently developed rainbow structures consisting of spatially varied profiles have been shown to generate wider bandgaps than periodic structures. Inspired by this design strategy, rainbow metamaterials composed of nonperiodic mass blocks in two-dimensional (2D) space were proposed in the present study. The blocks were connected by curved beams and tessellated with internal voids to adjust their masses. In order to demonstrate the effects of the rainbow design, two 2D metamaterials, with periodic and nonperiodic units, respectively, were investigated and manufactured using additive manufacturing technologies. Receptance functions, i.e., displacement frequency response functions, of the manufactured metamaterials were calculated with finite element models and measured with a testing system containing a mechanical shaker, an impedance head, and a laser Doppler vibrometer. The obtained numerical and experimental results showed that the metamaterial with rainbow blocks has extended bandgaps compared with the periodic metamaterial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699169PMC
http://dx.doi.org/10.3390/ma13225225DOI Listing

Publication Analysis

Top Keywords

rainbow metamaterials
8
pncs metamaterials
8
metamaterials
6
investigation rainbow
4
metamaterials broadband
4
broadband vibration
4
vibration attenuation
4
attenuation phononic
4
phononic crystals
4
crystals pncs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!