Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699191 | PMC |
http://dx.doi.org/10.3390/metabo10110471 | DOI Listing |
Int J Biol Macromol
January 2025
College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:
Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.
View Article and Find Full Text PDFNutrients
January 2025
Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria.
Individuals with special metabolic demands are at risk of deficiencies in fat-soluble vitamins, which can be counteracted via supplementation. Here, we tested the ability of micellization alone or in combination with selected natural plant extracts to increase the intestinal absorption and bioefficacy of fat-soluble vitamins. Micellated and nonmicellated vitamins D3 (cholecalciferol), D2 (ergocalciferol), E (alpha tocopheryl acetate), and K2 (menaquionone-7) were tested in intestinal Caco-2 or buccal TR146 cells in combination with curcuma (), black pepper (), or ginger () plant extracts.
View Article and Find Full Text PDFNutrients
January 2025
Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
Background/objectives: Dysgeusia contributes to malnutrition and worsens the quality of life of patients with cancer. Despite the different strategies, there is no effective treatment for patients suffering from taste disorders provided by the pharmaceutical industry. Therefore, we developed a novel strategy for reducing side effects in cancer patients by providing a novel food supplement with the taste-modifying glycoprotein miraculin, which is approved by the European Union, as an adjuvant to medical-nutritional therapy.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland.
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!