Subcellular localization is a critical aspect of protein function and the potential application of proteins either as drugs or drug targets, or in industrial and domestic applications. However, the experimental determination of protein localization is time consuming and expensive. Therefore, various localization predictors have been developed for particular groups of species. Intriguingly, despite their major representation amongst biotechnological cell factories and pathogens, a meta-predictor based on sorting signals and specific for Gram-positive bacteria was still lacking. Here we present GP4, a protein subcellular localization meta-predictor mainly for Firmicutes, but also Actinobacteria, based on the combination of multiple tools, each specific for different sorting signals and compartments. Novelty elements include improved cell-wall protein prediction, including differentiation of the type of interaction, prediction of non-canonical secretion pathway target proteins, separate prediction of lipoproteins and better user experience in terms of parsability and interpretability of the results. GP4 aims at mimicking protein sorting as it would happen in a bacterial cell. As GP4 is not homology based, it has a broad applicability and does not depend on annotated databases with homologous proteins. Non-canonical usage may include little studied or novel species, synthetic and engineered organisms, and even re-use of the prediction data to develop custom prediction algorithms. Our benchmark analysis highlights the improved performance of GP4 compared to other widely used subcellular protein localization predictors. A webserver running GP4 is available at http://gp4.hpc.rug.nl/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294519 | PMC |
http://dx.doi.org/10.1093/bib/bbaa302 | DOI Listing |
Plants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.
-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().
View Article and Find Full Text PDF, a calciphilic species native to the mountainous regions of Southwest China, is renowned for its high vitamin C and bioactive components, making it valuable for culinary and medicinal uses. This species exhibits remarkable tolerance to the high-calcium conditions typical of karst terrains. However, the underlying mechanisms of this calcium resilience remain unclear.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.
β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.
View Article and Find Full Text PDFMicroorganisms
December 2024
College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
Corn leaf blight and stem rot caused by are significant diseases that severely affect corn crops. Glycosyltransferases (GTs) catalyze the transfer of sugar residues to diverse receptor molecules, participating in numerous biological processes and facilitating functions ranging from structural support to signal transduction. This study identified 101 genes through functional annotation of the TZ-3 genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!