4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network.

Phys Med Biol

Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

Published: January 2021

Although convolutional neural networks (CNNs) demonstrate the superior performance in denoising positron emission tomography (PET) images, a supervised training of the CNN requires a pair of large, high-quality PET image datasets. As an unsupervised learning method, a deep image prior (DIP) has recently been proposed; it can perform denoising with only the target image. In this study, we propose an innovative procedure for the DIP approach with a four-dimensional (4D) branch CNN architecture in end-to-end training to denoise dynamic PET images. Our proposed 4D CNN architecture can be applied to end-to-end dynamic PET image denoising by introducing a feature extractor and a reconstruction branch for each time frame of the dynamic PET image. In the proposed DIP method, it is not necessary to prepare high-quality and large patient-related PET images. Instead, a subject's own static PET image is used as additional information, dynamic PET images are treated as training labels, and denoised dynamic PET images are obtained from the CNN outputs. Both simulation with [F]fluoro-2-deoxy-D-glucose (FDG) and preclinical data with [F]FDG and [C]raclopride were used to evaluate the proposed framework. The results showed that our 4D DIP framework quantitatively and qualitatively outperformed 3D DIP and other unsupervised denoising methods. The proposed 4D DIP framework thus provides a promising procedure for dynamic PET image denoising.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/abcd1aDOI Listing

Publication Analysis

Top Keywords

dynamic pet
28
pet image
24
pet images
20
image denoising
12
pet
11
deep image
8
image prior
8
image
8
four-dimensional branch
8
convolutional neural
8

Similar Publications

Up-to-Date Imaging for Parathyroid Tumor Localization in MEN1 Patients with Primary Hyperparathyroidism: When and Which Ones (A Narrative Pictorial Review).

Diagnostics (Basel)

December 2024

Department of Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, 67200 Strasbourg, France.

Patients diagnosed with multiple endocrine neoplasia type-1 (MEN1) often initially present with primary hyperparathyroidism (pHPT), and typically undergo surgical intervention. While laboratory tests are fundamental for diagnosis, imaging is crucial for localizing pathological parathyroids to aid in precise surgical planning. In this pictorial review, we will begin by comprehensively examining key imaging techniques and their established protocols, evaluating their effectiveness in detecting abnormal parathyroid glands.

View Article and Find Full Text PDF

A Study on the Attachment to Pets Among Owners of Cats and Dogs Using the Lexington Attachment to Pets Scale (LAPS) in the Basque Country.

Animals (Basel)

January 2025

Department of Basic Psychological Processes and Their Development, Euskal Herriko Unibertsitatea (UPV/EHU), Tolosa Hiribidea, 20018 Donostia, Spain.

The relationship between humans and their pets has long fascinated researchers, particularly in exploring how attachment varies according to the type of pet. Cats and dogs exhibit unique behavioral and social traits that influence the dynamics of human-pet relationships. Moreover, specific human characteristics have been found to affect this attachment.

View Article and Find Full Text PDF

Radiosynthesis and evaluation of novel F labeled PET ligands for imaging monoacylglycerol lipase.

Eur J Med Chem

January 2025

Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States. Electronic address:

Monoacylglycerol lipase (MAGL) is a 33 kDa cytosolic serine hydrolase that is widely distributed in the central nervous system and peripheral tissues. MAGL hydrolyzes monoacylglycerols into fatty acids and glycerol, playing a crucial role in endocannabinoid degradation. Inhibition of MAGL in the brain elevates levels of 2-arachidonoylglycerol and leads to decreased pro-inflammatory prostaglandin and thromboxane production.

View Article and Find Full Text PDF
Article Synopsis
  • The transmembrane potential is crucial for cellular functions like signaling and energy production, with Rhodamine voltage reporters (RhoVRs) serving as small, non-invasive sensors that can detect voltage changes, especially in mitochondria.
  • Extensive simulations and free-energy calculations revealed that the orientation of RhoVRs relative to membranes, influenced by their polarized functional groups, significantly impacts their voltage sensitivity and localization within cells.
  • The study's findings on the relationship between the chemical structure of RhoVRs and their membrane behavior offer valuable insights for designing fluorescent dyes that better detect voltage changes.
View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!