Range-of-motion affects cartilage fluid load support: functional implications for prolonged inactivity.

Osteoarthritis Cartilage

Department of Biomedical Engineering, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA. Electronic address:

Published: January 2021

AI Article Synopsis

  • The study investigates how joint movements affect the ability of cartilage to maintain fluid load support (FLS), challenging the idea that small involuntary movements are detrimental during prolonged inactivity.
  • Experiments were conducted using smooth glass spheres sliding against bovine cartilage samples under various loads and movement distances, revealing that even minimal movements (0.05 mm) can sustain non-zero FLS.
  • The results suggest that small movements like fidgeting can help maintain FLS, but the benefits decrease if the movement length is less than ten times the contact diameter, highlighting both the potential advantages and limitations of minor joint movements for long-term cartilage health.

Article Abstract

Objective: Joint movements sustain cartilage fluid load support (FLS) through a combination of contact migration and periodic bath exposure. Although there have been suggestions that small involuntary movements may disrupt load-induced exudation during prolonged inactivity, theoretical studies have shown otherwise. This work used well-controlled explant measurements to experimentally test an existing hypothesis that the range-of-motion must exceed the contact length to sustain non-zero FLS.

Method: Smooth glass spheres (1.2-3.2 mm radius) were slid at 1.5 mm/s (Péclet number >100) against bovine osteochondral explants under varying normal loads (0.05-0.1 N) and migration lengths (0.05-7 mm) using a custom instrument. In situ deformation measurements were used to quantify FLS.

Results: Non-zero FLS was maintained at migration lengths as small as 0.05 mm or <10% the typical contact diameter. FLS peaked when track lengths exceeded 10 times the contact diameter. For migration lengths below this threshold, FLS decreased with increased contact stress.

Conclusions: Migration lengths far smaller than the contact diameter can sustain non-zero FLS, which, from a clinical perspective, indicates that fidgeting and drifting can mitigate exudation and loss of FLS during prolonged sitting and standing. Nonetheless, FLS decreased monotonically with decreased migration length when migration lengths were less than 10 times the contact diameter. The results demonstrate: (1) potential biomechanical benefits from small movement (e.g., drifting and fidgeting); (2) the quantitative limits of those benefits; (3) and how loads, movement patterns, and mobility likely impact long term FLS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joca.2020.11.005DOI Listing

Publication Analysis

Top Keywords

cartilage fluid
8
fluid load
8
load support
8
prolonged inactivity
8
migration lengths
8
range-of-motion cartilage
4
support functional
4
functional implications
4
implications prolonged
4
inactivity objective
4

Similar Publications

Collagen/polyvinyl alcohol scaffolds combined with platelet-rich plasma to enhance anterior cruciate ligament repair.

Biomater Adv

December 2024

College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:

In anterior cruciate ligament (ACL) repair methods, the continuous enzymatic erosion of synovial fluid can impede healing and potentially lead to repair failure, as well as exacerbate articular cartilage wear, resulting in joint degeneration. Inspired by the blood clot during medial collateral ligament healing, we developed a composite scaffold comprising collagen (1 %, w/v) and polyvinyl alcohol (5 %, w/v) combined with platelet-rich plasma (PRP). The composite scaffold provides a protective barrier against synovial erosion for the ruptured ACL, while simultaneously facilitating tissue repair, thereby enhancing the efficacy of ACL repair techniques.

View Article and Find Full Text PDF

Multi-tiered proteome analysis displays the hyper-permeability of the rheumatoid synovial compartment for plasma proteins.

Mol Cell Proteomics

December 2024

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands. Electronic address:

Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction. RA affects the synovial joints, the synovial lining and the permeability of the synovium. As the latter is of central relevance for the distribution of systemically delivered therapeutics into synovial fluid (SF), we here assessed the protein composition of paired plasma and SF of patients diagnosed with RA at three distinct levels of depth using mass spectrometric approaches: the "total" proteome, the "total" IgG1 antibody repertoire and the RA-specific ACPA IgG1 autoantibody repertoire.

View Article and Find Full Text PDF
Article Synopsis
  • Acetabular chondrolabral delamination (ACD) is a prevalent hip injury with few effective treatments; this study explored the use of PLGA conical nail fixation as a potential method.
  • The experiment involved 24 pigs with surgically induced ACD, divided into three groups: a control (no treatment), an acute fixation group using PLGA nails, and a chronic fixation group using spacers before PLGA nails.
  • Results indicated that the pigs in the acute fixation group showed significantly better cartilage regeneration and proteoglycan deposition compared to the control and chronic groups, suggesting PLGA nails are effective for treating ACD.
View Article and Find Full Text PDF

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Stress causes lipid droplet accumulation in chondrocytes by impairing microtubules.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:

Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!