USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle.

Int J Biochem Cell Biol

Transcription and Signal Transduction Lab, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.

Published: January 2021

Eukaryotic cells perform a range of complex processes, some essential for life, others specific to cell type, all of which are governed by post-translational modifications of proteins. Among the repertoire of dynamic protein modifications, ubiquitination is arguably the most arcane and profound due to its complexity. Ubiquitin conjugation consists of three main steps, the last of which involves a multitude of target-specific ubiquitin ligases that conjugate a range of ubiquitination patterns to protein substrates with diverse outcomes. In contrast, ubiquitin removal is catalysed by a relatively small number of de-ubiquitinating enzymes (DUBs), which can also display target specificity and impact decisively on cell function. Here we review the current knowledge of the intriguing ubiquitin-specific protease 17 (USP17) family of DUBs, which are expressed from a highly copy number variable gene that has been implicated in multiple cancers, although available evidence points to conflicting roles in cell proliferation and survival. We show that key USP17 substrates populate two pathways that drive cell cycle progression and that USP17 activity serves to promote one pathway but inhibit the other. We propose that this arrangement enables USP17 to stimulate or inhibit proliferation depending on the mitogenic pathway that predominates in any given cell and may partially explain evidence pointing to both oncogenic and tumour suppressor properties of USP17.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2020.105886DOI Listing

Publication Analysis

Top Keywords

cell cycle
8
cell
6
usp17
5
usp17-mediated de-ubiquitination
4
de-ubiquitination cancer
4
cancer clients
4
clients cluster
4
cluster cell
4
cycle eukaryotic
4
eukaryotic cells
4

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

After more than 15 years of decline, the Malaria epidemy has increased again since 2017, reinforcing the need to identify drug candidates active on new targets involved in at least two biological stages of the Plasmodium life cycle. The SUB1 protease, which is essential for parasite egress in both hepatic and blood stages, would meet these criteria. We previously reported the structure-activity relationship analysis of α-ketoamide-containing inhibitors encompassing positions P4-P2'.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as HO, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!