Visual effort moderates postural cascade dynamics.

Neurosci Lett

Department of Psychology, Grinnell College, Grinnell, IA 50112, USA. Electronic address:

Published: January 2021

Standing still and focusing on a visible target in front of us is a preamble to many coordinated behaviors (e.g., reaching an object). Hiding behind its apparent simplicity is a deep layering of texture at many scales. The task of standing still laces together activities at multiple scales: from ensuring that a few photoreceptors on the retina cover the target in the visual field on an extremely fine scale to synergies spanning the limbs and joints at smaller scales to the mechanical layout of the ground underfoot and optic flow in the visual field on the coarser scales. Here, we used multiscale probability density function (PDF) analysis to show that postural fluctuations exhibit similar statistical signatures of cascade dynamics as found in fluid flow. In participants asked to stand quietly, the oculomotor strain of visually fixating at different distances moderated postural cascade dynamics. Visually fixating at a comfortable viewing distance elicited posture with a similar cascade dynamics as posture with eyes closed. Greater viewing distances known to stabilize posture showed more diminished cascade dynamics. In contrast, nearest and farthest viewing distances requiring greater oculomotor strain to focus on targets elicited a dramatic strengthening of postural cascade dynamics, reflecting active postural adjustments. Critically, these findings suggest that vision stabilizes posture by reconfiguring the prestressed poise that prepares the body to interact with different spatial layouts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2020.135511DOI Listing

Publication Analysis

Top Keywords

cascade dynamics
24
postural cascade
12
visual field
8
oculomotor strain
8
visually fixating
8
viewing distances
8
cascade
6
dynamics
6
postural
5
visual effort
4

Similar Publications

A High-Efficiency Autocatalysis-Oriented Cascade Circuit via Reciprocal Hug-Amplification for Assay-to-Treat Application.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3).

View Article and Find Full Text PDF

Motif-driven dynamics and intermediates during unfolding of multi-domain BphC enzyme.

J Chem Phys

January 2025

Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.

Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.

View Article and Find Full Text PDF

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Soil nutrient limitation controls trophic cascade effects of micro-food web-derived ecological functions in degraded agroecosystems.

J Adv Res

January 2025

College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China. Electronic address:

Introduction: Soil nutrient supply drives the ecological functions of soil micro-food webs through bottom-up and top-down mechanisms in degraded agroecosystems. Nutrient limitation responds sensitively to variations in degraded agroecosystems through restoration practices, such as legume intercropping.

Objectives: This study examined the effects of legume intercropping on trophic cascade dynamics through resource supply in degraded purple soil ecosystems.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!