A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clinical trials in critical care: can a Bayesian approach enhance clinical and scientific decision making? | LitMetric

Clinical trials in critical care: can a Bayesian approach enhance clinical and scientific decision making?

Lancet Respir Med

Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology, University Health Network and Sinai Health System, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada.

Published: February 2021

Recent Bayesian reanalyses of prominent trials in critical illness have generated controversy by contradicting the initial conclusions based on conventional frequentist analyses. Many clinicians might be sceptical that Bayesian analysis, a philosophical and statistical approach that combines prior beliefs with data to generate probabilities, provides more useful information about clinical trials than the frequentist approach. In this Personal View, we introduce clinicians to the rationale, process, and interpretation of Bayesian analysis through a systematic review and reanalysis of interventional trials in critical illness. In the majority of cases, Bayesian and frequentist analyses agreed. In the remainder, Bayesian analysis identified interventions where benefit was probable despite the absence of statistical significance, where interpretation depended substantially on choice of prior distribution, and where benefit was improbable despite statistical significance. Bayesian analysis in critical care medicine can help to distinguish harm from uncertainty and establish the probability of clinically important benefit for clinicians, policy makers, and patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439199PMC
http://dx.doi.org/10.1016/S2213-2600(20)30471-9DOI Listing

Publication Analysis

Top Keywords

bayesian analysis
16
trials critical
12
clinical trials
8
critical care
8
critical illness
8
frequentist analyses
8
statistical significance
8
bayesian
7
critical
4
care bayesian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!