Exposure of male fish to estrogenic substances from wastewater treatment works (WwTWs) results in feminization and reduced reproductive fitness. Nevertheless, self-sustaining populations of roach () inhabit river stretches polluted with estrogenic WwTW effluents. In this study, we examine whether such roach populations have evolved adaptations to tolerate estrogenic pollution by comparing frequency differences in single-nucleotide polymorphisms (SNPs) between populations sampled from rivers receiving either high- or low-level WwTW discharges. SNPs within 36 "candidate" genes, selected for their involvement in estrogenic responses, and 120 SNPs in reference genes were genotyped in 465 roaches. There was no evidence for selection in highly estrogen-dependent candidate genes, including those for the estrogen receptors, aromatases, and vitellogenins. The androgen receptor () and cytochrome P450 1A genes were associated with large shifts in allele frequencies between catchments and in individual populations, but there is no clear link to estrogen pollution. Selection at in the effluent-dominated River Lee may have resulted from historical contamination with endocrine-disrupting pesticides. Critically, although our results suggest population-specific selection including at genes related to endocrine disruption, there was no strong evidence that the selection resulted from exposure to estrogen pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c00957 | DOI Listing |
DNA Res
January 2025
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
Pontederia cordata L. is an aquatic ornamental plant native to the Americas, but has been widely distributed in South Asia, Australia, and Europe. The genetic mechanisms behind its rapid adaptation and spread have not yet been well understood.
View Article and Find Full Text PDFGigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
Mol Biol Evol
January 2025
Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America.
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).
View Article and Find Full Text PDFiScience
February 2025
Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!