Structural characterization, reactivity, and vibrational properties of silver clusters: a new global minimum for Ag.

Phys Chem Chem Phys

Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2810, Santiago, Chile.

Published: December 2020

AI Article Synopsis

Article Abstract

In the present work, the lowest energy structures and electronic properties of Agn clusters up to n = 16 are investigated using a successive growth algorithm coupled with density functional theory calculations (DFT). In the literature, a number of putative global minimum structures for silver clusters have been reported by using different approaches, but a comparative study for n = 15-16 has not been undertaken so far. Here, we perform a comparative study using the PW91/cc-pVDZ-PP level to more precisely determine the optimal configuration. For Ag15, the most stable configuration is a four layered 1-4-6-4 stacking structure with C2v symmetry. For Ag16 a new most stable form is found with a 1-4-2-5-1-3 stacking structure in the singlet state, slightly more stable than the putative global minimum reported. By means of the electrostatic potential, the new putative global minimum has been found to be more reactive, and the active sites of the clusters were identified and confirmed with the interaction energy. The electronic and vibrational properties are found to be in good agreement with the available experimental data. Theoretical data on the infrared spectra of the clusters is also provided.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp04018eDOI Listing

Publication Analysis

Top Keywords

global minimum
16
putative global
12
vibrational properties
8
silver clusters
8
comparative study
8
stacking structure
8
clusters
5
structural characterization
4
characterization reactivity
4
reactivity vibrational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!