Purpose: During treatment planning for head-and-neck volumetric-modulated arc therapy (VMAT), manual contouring of the metal artifact area of artificial teeth is done, and the area is replaced with water computed tomography (CT) values for dose calculation. This contouring of the metal artifact areas, which is performed manually, is subject to human variability. The purpose of this study is to evaluate and analyze the effect of inter-observer variation on dose distribution.
Methods: The subjects were 25 cases of cancer of the oropharynx for which VMAT was performed. Six radiation oncologists (ROs) performed metal artifact contouring for all of the cases. Gross tumor volume, clinical target volume, planning target volume (PTV), and oral cavity were evaluated. The contouring of the six ROs was divided into two groups, small and large groups. A reference RO was determined for each group and the dose distribution was compared with those of the other radiation oncologists by gamma analysis (GA). As an additional experiment, we changed the contouring of each dental metal artifact area, creating enlarged contours (L), reduced contours (S), and undrawn contours (N) based on the contouring by the six ROs and compared these structure sets.
Results: The evaluation of inter-observer variation showed no significant difference between the large and small groups, and the GA pass rate was 100%. Similar results were obtained comparing structure sets L and S, but in the comparison of structure sets L and N, there were cases with pass rates below 70%.
Conclusions: The results show that the artificial variability of manual artificial tooth metal artifact contouring has little effect on the dose distribution of VMAT. However, it should be noted that the dose distribution may change depending on the contouring method in cases where the overlap between PTV and metal artifact areas is large.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769385 | PMC |
http://dx.doi.org/10.1002/acm2.13101 | DOI Listing |
Cureus
December 2024
Department of Neurological Surgery, Ryofukai Satoh Neurosurgical Hospital, Fukuyama, Hiroshima, JPN.
Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Trauma and Orthopaedic Surgeon, Cork University Hospital, Ireland.
Introduction: In this article, we report a unique case of head-stem dissociation in a metal-on-metal total hip replacement which utilized an Exeter stem. Although metallosis and pseudotumor formation are well recognized complications of metal-on-metal hip replacements, head-stem dissociations are rare with few being reported in literature. To the best of our knowledge, this case report is the first to report this occurrence in an Exeter stem.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 10845, Taiwan.
A 66-year-old woman presented with persistent knee effusion three months after undergoing a cemented medial uni-compartmental knee replacement. She was afebrile and able to walk with a stick. Physical examination revealed moderate effusion.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
The Department of Computer and Data Science, Case Western Reserve University, Cleveland, OH, USA; The Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Resident of Oral and Maxillofacial Radiology, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: Early detection of peri-implant bone defects can improve long-term durability of dental implants. By the advances in cone-beam computed tomography (CBCT) scanners and introduction of new algorithms, it is important to find the most efficient protocol for detection of bone defects. This study aimed to assess the efficacy of metal artifact reduction (MAR) and advanced noise reduction (ANR) algorithms for detection of peri-implant bone defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!