Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα. Estrogen protects against bone loss but is not a suitable treatment due to adverse effects in other tissues. Therefore, increased knowledge regarding estrogen signaling in estrogen-responsive tissues is warranted to aid the development of bone-specific estrogen treatments. Estrogen receptor-α (ERα), the main mediator of estrogenic effects in bone, is widely subjected to posttranslational modifications (PTMs). In vitro studies have shown that methylation at site R260 in the human ERα affects receptor localization and intracellular signaling. The corresponding amino acid R264 in murine ERα has been shown to have a functional role in endothelium in vivo, although the methylation of R264 in the murine gene is yet to be empirically demonstrated. The aim of this study was to investigate whether R264 in ERα is involved in the regulation of the skeleton in vivo. Dual-energy X-ray absorptiometry (DEXA) analysis at 3, 6, 9, and 12 mo of age showed no differences in total body areal bone mineral density (BMD) between R264A and wild type (WT) in either female or male mice. Furthermore, analyses using computed tomography (CT) demonstrated that trabecular bone mass in tibia and vertebra and cortical thickness in tibia were similar between R264A and WT mice. In addition, R264A females displayed a normal estrogen treatment response in trabecular bone mass as well as in cortical thickness. Furthermore, uterus, thymus, and adipose tissue responded similarly in R264A and WT female mice after estrogen treatment. In conclusion, our novel finding that mutation of R264 in ERα does not affect the regulation of the skeleton, together with the known role of R264 for ERα-mediated endothelial effects, supports the concept that R264 determines tissue specificity of ERα. Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00349.2019DOI Listing

Publication Analysis

Top Keywords

regulation skeleton
12
erα-mediated endothelial
12
endothelial effects
12
novel finding
12
finding mutation
12
mutation r264
12
effects supports
12
supports concept
12
concept r264
12
r264 determines
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!