Small-Molecule Inhibitors Directly Targeting KRAS as Anticancer Therapeutics.

J Med Chem

International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.

Published: December 2020

KRAS, the most frequently mutated oncogene, plays a predominant role in driving initiation and progression of cancers. Decades of effort to target KRAS using small molecules has been unsuccessful, causing KRAS to be considered an "undruggable" cancer target. However, this view began to change recently, as drug discovery techniques have developed several KRAS G12C allosteric inhibitors that are currently being evaluated in clinical trials. Herein we provide an in-depth analysis of the structure and binding pockets of KRAS, medicinal chemistry optimization processes, and the biological characterization of small-molecule inhibitors that directly target KRAS, including covalent allosteric inhibitors specific for the G12C mutant, GTP-competitive inhibitors targeting the nucleotide-binding site, and protein-protein interaction inhibitors that bind in the switch I/II pocket or the A59 site. Additionally, we propose potential challenges faced by these new classes of KRAS inhibitors under clinical evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c01312DOI Listing

Publication Analysis

Top Keywords

small-molecule inhibitors
8
inhibitors directly
8
kras
8
target kras
8
allosteric inhibitors
8
inhibitors
6
directly targeting
4
targeting kras
4
kras anticancer
4
anticancer therapeutics
4

Similar Publications

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target.

View Article and Find Full Text PDF

Background: Adenoid cystic carcinoma (ACC) is a rare glandular malignancy, commonly originating in salivary glands of the head and neck. Given its protracted growth, ACC is usually diagnosed in advanced stage. Treatment of ACC is limited to surgery and/or adjuvant radiotherapy, which often fails to prevent disease recurrence, and no FDA-approved targeted therapies are currently available.

View Article and Find Full Text PDF

Discovery of a tribenzophenazine analog for binding to the KRAS mRNA G-quadruplex structures in the cisplatin-resistant non-small cell lung cancer.

J Biol Chem

January 2025

Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China. Electronic address:

Lung cancer is the malignant tumor with the highest morbidity and mortality rate worldwide, of which non-small cell lung cancer (NSCLC) accounts for approximately 85%. KRAS mutations are one of the significant mechanisms underlying the occurrence, development, immune escape, and chemotherapy resistance of NSCLC. Two KRAS inhibitors are approved by FDA for the treatment of NSCLC in the past three years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!