Chemical polarity governs various mechanical, chemical, and thermodynamic properties of dielectrics. Polar liquids have been amply studied, yet the basic mechanisms underpinning their dielectric properties remain not fully understood, as standard models following Debye's phenomenological approach do not account for quantum effects and cannot aptly reproduce the full dc-up-to-THz spectral range. Here, using the illustrative case of monohydric alcohols, we show that deep tunneling and the consequent intermolecular separation of excess protons and "proton-holes" in the polar liquids govern their static and dynamic dielectric properties on the same footing. We performed systematic ultrabroadband (0-10 THz) spectroscopy experiments with monohydric alcohols of different (0.4-1.6 nm) molecular lengths and show that the finite lifetime of molecular species and the proton-hole correlation length are the two principle parameters responsible for the dielectric response of all the studied alcohols across the entire frequency range. Our results demonstrate that a quantum nonrotational intermolecular mechanism drives the polarization in alcohols while the rotational mechanism of molecular polarization plays a secondary role, manifesting itself in the sub-terahertz region only.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c09380DOI Listing

Publication Analysis

Top Keywords

polarization alcohols
8
polar liquids
8
dielectric properties
8
monohydric alcohols
8
alcohols
5
nonrotational mechanism
4
mechanism polarization
4
alcohols chemical
4
chemical polarity
4
polarity governs
4

Similar Publications

Doxorubicin is an anthracycline antibiotic widely used in cancer therapy. However, its cytotoxic properties affect both cancerous and healthy cells. Combining doxorubicin with antioxidants such as ferulic acid reduces its side effects, while simultaneously enhancing therapeutic effectiveness.

View Article and Find Full Text PDF

Nozaki-Hiyama-Kishi (NHK) reactions offer a mild approach for the formation of alcohol motifs through radical-polar crossover-based pathways from various radical precursors. However, the application of multicomponent NHK-type reactions, which allow the formation of multiple bonds in a single step, has been largely restricted to bulky alkyl radical precursors, thus limiting their expanded utilization. Herein, we disclose a general three-component NHK-type reaction enabled by delayed radical-polar crossover, which efficiently tolerates a plethora of radical precursors that were previously unavailable.

View Article and Find Full Text PDF

Molecular Dynamics Simulation of the Compatibility Between Supercritical Carbon Dioxide and Coating Resins Assisted by Co-Solvents.

Materials (Basel)

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Institute of Environmental Science, Fudan University, Shanghai 200433, China.

The use of supercritical carbon dioxide (ScCO) as a replacement for volatile organic solvents in coatings has the potential to reduce air pollution. This paper presents the findings of a molecular dynamics simulation study investigating the dissolution behavior of polyvinylidene fluoride (PVDF) in ScCO assisted by five co-solvents. On the basis of solubility parameters, interaction binding energy, and radial distribution functions, the impacts of temperature, pressure, and co-solvents on the compatibility of ScCO and PVDF were investigated at the microscopic level.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!