Multi-Layer π-Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters.

Angew Chem Int Ed Engl

Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.

Published: March 2021

Multi-layer π-stacked emitters based on spatially confined donor/acceptor/donor (D/A/D) patterns have been developed to achieve high-efficiency thermally activated delayed fluorescence (TADF). In this case, dual donor moieties and a single acceptor moiety are introduced to form two three-dimensional (3D) emitters, DM-BD1 and DM-BD2, which rely on spatial charge transfer (CT). Owing to the enforced face-to-face D/A/D pattern, effective CT interactions are realized, which lead to high photoluminescence quantum yields (PLQYs) of 94.2 % and 92.8 % for the two molecules, respectively. The resulting emitters exhibit small singlet-triplet energy splitting (ΔE ) and fast reverse intersystem crossing (RISC) processes. Maximum external quantum efficiencies (EQEs) of 28.0 % and 26.6 % were realized for devices based on DM-BD1 and DM-BD2, respectively, which are higher than those of their D/A-type analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202011384DOI Listing

Publication Analysis

Top Keywords

multi-layer π-stacked
8
thermally activated
8
activated delayed
8
delayed fluorescence
8
dm-bd1 dm-bd2
8
π-stacked molecules
4
molecules efficient
4
efficient thermally
4
emitters
4
fluorescence emitters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!