A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinematics of the Feline Antebrachiocarpal Joint from Supination to Pronation. | LitMetric

Kinematics of the Feline Antebrachiocarpal Joint from Supination to Pronation.

Vet Comp Orthop Traumatol

Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales, Australia.

Published: March 2021

Objective:  Cats rely on their forelimb mobility for everyday activities including climbing and grooming. Supination and pronation of the forelimb in cats are considered to primarily involve the antebrachium, rather than the carpus. Therefore, our null hypothesis was that there would be no movement of the carpal bones (radial carpal bone, ulnar carpal bone and accessory carpal bone) relative to the ulna during supination and pronation.

Study Design:  Eight feline cadaveric forelimbs were rotated from supination to pronation in a jig and computed tomography was performed in the neutral, supinated and pronated positions. The individual carpal bones were segmented from computed tomography images of the supinated and pronated scans in each of the eight specimens. A feline ulna coordinate system was established and used to quantify the translations and rotations between bones of the proximal carpal row and antebrachium.

Results:  After the carpus was rotated from the initial supinated position into pronation, there was significant translation (x, y and z axes) and rotation (x and y axes) of the proximal row of carpal bones based on absolute magnitude values. Given the differences in translations and rotations of the proximal row of carpal bones, our null hypothesis was rejected.

Conclusion:  The proximal row of carpal bones translate and rotate independently from the ulna in the cat during pronation of the antebrachium. This may have future implications in the diagnosis and management of feline carpal injuries involving the antebrachiocarpal joint.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0040-1719063DOI Listing

Publication Analysis

Top Keywords

carpal bones
20
supination pronation
12
carpal bone
12
proximal row
12
row carpal
12
carpal
10
antebrachiocarpal joint
8
null hypothesis
8
computed tomography
8
supinated pronated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!