A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and Verification of a Digital Twin Patient Model to Predict Specific Treatment Response During the First 24 Hours of Sepsis. | LitMetric

Development and Verification of a Digital Twin Patient Model to Predict Specific Treatment Response During the First 24 Hours of Sepsis.

Crit Care Explor

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, MN.

Published: November 2020

Unlabelled: To develop and verify a digital twin model of critically ill patient using the causal artificial intelligence approach to predict the response to specific treatment during the first 24 hours of sepsis.

Design: Directed acyclic graphs were used to define explicitly the causal relationship among organ systems and specific treatments used. A hybrid approach of agent-based modeling, discrete-event simulation, and Bayesian network was used to simulate treatment effect across multiple stages and interactions of major organ systems (cardiovascular, neurologic, renal, respiratory, gastrointestinal, inflammatory, and hematology). Organ systems were visualized using relevant clinical markers. The application was iteratively revised and debugged by clinical experts and engineers. Agreement statistics was used to test the performance of the model by comparing the observed patient response versus the expected response (primary and secondary) predicted by digital twin.

Setting: Medical ICU of a large quaternary- care academic medical center in the United States.

Patients Or Subjects: Adult (> 18 year yr old), medical ICU patients were included in the study.

Interventions: No additional interventions were made beyond the standard of care for this study.

Measurements And Main Results: During the verification phase, model performance was prospectively tested on 145 observations in a convenience sample of 29 patients. Median age was 60 years (54-66 d) with a median Sequential Organ Failure Assessment score of 9.5 (interquartile range, 5.0-14.0). The most common source of sepsis was pneumonia, followed by hepatobiliary. The observations were made during the first 24 hours of the ICU admission with one-step interventions, comparing the output in the digital twin with the real patient response. The agreement between the observed versus and the expected response ranged from fair (kappa coefficient of 0.41) for primary response to good (kappa coefficient of 0.65) for secondary response to the intervention. The most common error detected was coding error in 50 observations (35%), followed by expert rule error in 29 observations (20%) and timing error in seven observations (5%).

Conclusions: We confirmed the feasibility of development and prospective testing of causal artificial intelligence model to predict the response to treatment in early stages of critical illness. The availability of qualitative and quantitative data and a relatively short turnaround time makes the ICU an ideal environment for development and testing of digital twin patient models. An accurate digital twin model will allow the effect of an intervention to be tested in a virtual environment prior to use on real patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671877PMC
http://dx.doi.org/10.1097/CCE.0000000000000249DOI Listing

Publication Analysis

Top Keywords

digital twin
20
organ systems
12
error observations
12
response
9
twin patient
8
model predict
8
specific treatment
8
twin model
8
causal artificial
8
artificial intelligence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!