A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption and Release Kinetics, Equilibrium, and Thermodynamic Studies of Hymexazol onto Diatomite. | LitMetric

Adsorption and Release Kinetics, Equilibrium, and Thermodynamic Studies of Hymexazol onto Diatomite.

ACS Omega

Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.

Published: November 2020

Pesticide sustained-release agents have advantages of low toxicity, high efficiency, and long duration. However, the sustained-release effects were not ideal, such as short release time and low release rate. The physical and chemical properties of diatomite are high stability, high porosity, and good sustained-release and controlled-release abilities. A series of diatomite-based pesticide sustained-release agents were prepared by adsorbing hymexazol onto diatomite. Kinetics, equilibrium, and thermodynamic studies for adsorption were carried out as well. It was found that the modified diatomite has a better adsorption effect for hymexazol, and the adsorption rate reached 16.64%. The equilibrium data followed with the Langmuir isotherm model, and the adsorption process was an endothermic process. Release results showed that the diatomite-based pesticide has a significant sustained-release effect. The sustained-release time reached more than 25 days, and the maximum release rate was above 70%. The experimental data was fitted into the Ritger-Peppas equation, and it was found that the release was controlled by the Fick diffusion mechanism. This confirmed the applicability of the modified diatomite as an efficient adsorption carrier for pesticide release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675930PMC
http://dx.doi.org/10.1021/acsomega.0c04449DOI Listing

Publication Analysis

Top Keywords

pesticide sustained-release
12
kinetics equilibrium
8
equilibrium thermodynamic
8
thermodynamic studies
8
hymexazol diatomite
8
sustained-release agents
8
release rate
8
diatomite-based pesticide
8
modified diatomite
8
adsorption
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!