Oily sludge is a hazardous waste. If not handled properly, it can not only pollute the environment but also endanger human health. This study is the first to use a response surface method to optimize the main parameters of rhamnolipid-based recovery of oil from oily sludge. Using rhamnolipids as the cleaning agent and the oil recovery fraction as the evaluation index, the factors affecting the cleaning efficiency of oily sludge were optimized. The aforementioned sludge was obtained from the Tarim Oilfield. A single-factor experiment was conducted to determine the optimal range of the dosage, liquid-solid ratio, pH value, and time. The Box-Behnken response surface method was used to investigate the influence of each variable on the residual oil fraction of the oily sludge, and the dosage, pH value, and time were found to have a significant impact. The model optimization results show that the best process conditions for rhamnolipid-based recovery of oil are as follows: rhamnolipid dosage = 167.785 mg/L; liquid-solid ratio = 4.589:1; pH = 9.618; time = 1.627 h. Under optimal conditions, the model-predicted oil recovery fraction and the actual oil recovery fraction were 85.15 and 82.56%, respectively; the relative error between the predicted and the actual values was 2.59%. These results indicate that the model results are reliable. The solid residue after the cleaning was also analyzed to gain an in-depth understanding of the cleaning process. This study determined the feasibility of a rhamnolipid-based solution for the treatment of oily sludge and oil-contaminated soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675929 | PMC |
http://dx.doi.org/10.1021/acsomega.0c04108 | DOI Listing |
Toxics
December 2024
School of Resource and Environmental Engineering, Shandong University of Technology, Zibo 255000, China.
The solid phase composition in oily sludge (OS) is a key factor affecting the oil-solid separation of OS. In this paper, the effects and mechanisms of solid-phase particle factors on the oil content of residue phase were investigated in order to improve the oil-solid separation efficiency. Flotation experiments were carried out on single-size sand and mixed-size sand OS consisting of three particle sizes at room temperature without adding flotation reagents.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan.
In the waste oil recycling industry, large amounts of oil-containing sludge are still generated, thus posing a resource depletion issue when disposed of or incinerated without energy recovery or residual oil utilization. In this work, chemical activation experiments using phosphoric acid (HPO) were performed at a low temperature (600 °C) for 30 min to produce porous carbon products. From the results of the pore property analysis, an increasing trend with an increasing impregnation ratio from 0.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey.
The improper disposal of olive mill wastewater (OMW) presents a significant environmental challenge for wastewater treatment plants (WWTPs) in the Gaza Strip. This study aims to evaluate the impact of OMW discharge on the operational efficiency of WWTPs, particularly during the olive harvesting season. To achieve this, samples were collected from both olive mills and WWTPs across the region and analyzed for key parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD), phenols, oil and grease, and total suspended solids (TSS).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
Bioresour Technol
December 2024
Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
The presence of petroleum hydrocarbon components (PHCs) in biological oily sludge increases the toxicity of the sludge and makes dewatering even more difficult. In this study, an atmospheric pressure plasma jet (APPJ) technology was used for treating biological oily sludge. The results showed that under specific conditions-a sludge/water ratio of 1:100, a discharge power of 440 W, and a 60-min treatment-the degradation rate of PHCs reached 36.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!