Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sugar transporter (SUT) genes are associated with multiple physiological and biochemical processes in filamentous fungi, such as the response to various stresses. However, limited systematic analysis and functional information of SUT gene family have been available on (). To investigate the potential roles of SUTs in , we performed an integrative analysis of the SUT gene family in this study. Based on the conserved protein domain search, 127 putative SUT genes were identified in and further categorized into eight distinct subfamilies. The result of gene structure and conserved motif analysis illustrated functional similarities among the AoSUT proteins within the same subfamily. Additionally, expression profiles of the AoSUT genes at different growth stages elucidated that most of AoSUT genes have high expression levels at the stationary phase while low in the adaptive phase. Furthermore, expression profiles of AoSUT genes under salt stress showed that AoSUT genes may be closely linked to salt tolerance and involved in sophisticated transcriptional process. The protein-protein interaction network of AoSUT propounded some potentially interacting proteins. A comprehensive overview of the AoSUT gene family will offer new insights into the structural and functional features as well as facilitate further research on the roles of AoSUT genes in response to abiotic stresses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666707 | PMC |
http://dx.doi.org/10.1155/2020/7146701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!