Background: Three-dimensional quantitative coronary angiography (3D-QCA) can provide more accurate measurement of true vessel size and may be comparable to intravascular ultrasound (IVUS) in identifying functionally significant coronary stenosis, as determined by fractional flow reserve (FFR). This study aimed to evaluate the diagnostic accuracy of 3D-QCA for predicting FFR <0.8.

Methods: We assessed 175 lesions in 175 patients by FFR, IVUS, and 3D-QCA. Correlations between 3D-QCA values, IVUS values, and FFR values were analyzed. Receiver operating characteristic (ROC) curves were used to evaluate diagnostic accuracy of 3D-QCA for predicting FFR <0.8 and to determine the appropriate cut-off value.

Results: Upon evaluating 3D-QCA values, minimum lumen area (MLA) correlated with FFR value (r=0.48, P<0.001). Considering IVUS values, MLA correlated with FFR value (r=0.43, P<0.001). Also, 3D-QCA MLA was well correlated with IVUS MLA (r=0.61, P<0.001). The area under the ROC curve (AUC) for 3D-QCA MLA was 0.77, and the best cut-off value was 2.37 (sensitivity: 73%, specificity: 71%). The AUC for IVUS MLA was 0.73, and the best cut-off value was 3.01 (sensitivity: 71%, specificity: 65%). There was no significant difference in AUC for 3D-MLA and IVUS-MLA (P=0.27).

Conclusions: 3D-QCA is not inferior to IVUS for functional assessment of intermediate coronary lesions. We can consider 3D-QCA as a suitable substitute for IVUS or FFR in determining coronary intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666945PMC
http://dx.doi.org/10.21037/cdt-20-560DOI Listing

Publication Analysis

Top Keywords

three-dimensional quantitative
8
quantitative coronary
8
coronary angiography
8
intravascular ultrasound
8
functionally coronary
8
comparison three-dimensional
4
coronary
4
angiography intravascular
4
ultrasound detecting
4
detecting functionally
4

Similar Publications

Intricate crosstalk among various lung cell types is crucial for orchestrating diverse physiological processes. Traditional two-dimensional and recent three-dimensional (3D) assay platforms fail to precisely replicate these complex communications. Many lung models do not effectively reflect the multicellular complexity of lung tissue.

View Article and Find Full Text PDF

Introduction: The mechanism of tannic acid (TA) intervention on methicillin-resistant (MRSA, USA 300) biofilm formation was explored using proteomics.

Methods: The minimum inhibitory concentration (MIC) of TA against the MRSA standard strain USA 300 was determined by two-fold serial dilution of the microbroth. The effects of TA were studied using crystal violet staining.

View Article and Find Full Text PDF

Polymers with rigid three-dimensional architectures have attracted significant attention due to their high rigidity and intrinsic microporosity. Here, we report the synthesis of a new class of rigid stepladder polymers featuring unique spirodihydroquinoline skeletons. Under the catalysis of a half-sandwich scandium catalyst, quinoline compounds bearing both an aryl substituent (e.

View Article and Find Full Text PDF

Dimensionality Reduction (DR) is an indispensable step to enhance classifier accuracy with data redundancy in hyperspectral images (HSI). This paper proposes a framework for DR that combines band selection (BS) and effective spatial features. The conventional clustering methods for BS typically face hard encounters when we have a less data items matched to the dimensionality of the accompanying feature space.

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!