Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Investigating the joint exposure to several risk factors is becoming a key component of epidemiologic studies. Individuals are exposed to multiple factors, often simultaneously, and evaluating patterns of exposures and high-dimension interactions may allow for a better understanding of health risks at the individual level. When jointly evaluating high-dimensional exposures, common statistical methods should be integrated with machine learning techniques that may better account for complex settings. Among these, Logic regression was developed to investigate a large number of binary exposures as they relate to a given outcome. This method may be of interest in several public health settings, yet has never been presented to an epidemiologic audience. In this paper, we review and discuss Logic regression as a potential tool for epidemiological studies, using an example of occupation history (68 binary exposures of primary occupations) and amyotrophic lateral sclerosis in a population-based Danish cohort. Logic regression identifies predictors that are Boolean combinations of the original (binary) exposures, fully operating within the regression framework of interest (e.g. linear, logistic). Combinations of exposures are graphically presented as Logic trees, and techniques for selecting the best Logic model are available and of high importance. While highlighting several advantages of the method, we also discuss specific drawbacks and practical issues that should be considered when using Logic regression in population-based studies. With this paper, we encourage researchers to explore the use of machine learning techniques when evaluating large-dimensional epidemiologic data, as well as advocate the need of further methodological work in the area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679079 | PMC |
http://dx.doi.org/10.1515/em-2019-0032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!