Background: Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function.

Methods: Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period.

Results: As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training.

Conclusion: Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41366-020-00723-zDOI Listing

Publication Analysis

Top Keywords

dietary vitamin
8
vitamin supplementation
8
early obesogenic
8
microbiota neuronal
8
neuronal cognitive
8
cognitive alterations
8
vas
6
supplementation prevents
4
prevents early
4
obesogenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!