Flowing down the river: Influence of hydrology on scale and accuracy of elemental composition classification in a large fluvial ecosystem.

Sci Total Environ

Chaire de recherche sur les espèces aquatiques exploitées, Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada.

Published: March 2021

AI Article Synopsis

  • Trace metals in fish structures, like otoliths and scales, can indicate the water composition where they lived and help assess fish population dynamics and migration patterns.
  • This study evaluates the variability of metal-to-calcium ratios (Me:Ca) in the St. Lawrence River and its tributaries to improve the accuracy of classifications based on elemental composition.
  • Findings reveal that while element ratios show stability over time, and classification accuracy is high with the right elements, errors often occur in closely located tributaries, suggesting that understanding regional variations is key for better trace metal analysis.

Article Abstract

Trace metals found in the calcified structures of fish (i.e. otolith, scales and vertebrae) serve as proxies for the ambient water composition at the time of mineralization, and these trace metals are increasingly used as a tool for assessing population structure and the migratory patterns of fish. However, the appropriate scale (e.g. resolution) for such applications can be uncertain because of a poor understanding of the spatiotemporal variations of metal-to-calcium ratios (Me:Ca) in the studied watersheds. This study aims to assess Me:Ca spatiotemporal variability within the St. Lawrence River and nine major tributaries and evaluate the ability of random-forest models to correctly identify rivers on the basis of their elemental composition. We tested the influence of daily discharge on four measured ratios (Sr:Ca, Ba:Ca, Mg:Ca and Mn:Ca) to document local and regional trace element sources and dynamics. The four element ratios displayed a low spatiotemporal variation, reflecting a marked stability over time. We observed that most element- and tributary-specific concentration-discharge relationships were either not significant or showed a weak influence, thereby confirming a stable point source dynamic. The classification performance based on a four-element model (Sr:Ca, Ba:Ca, Mg:Ca and Mn:Ca) produced a classification accuracy of 92.5%, which correspond to a small decrease of accuracy compared to the full model (25 elements, 96.6% of correct classification). A classification based on two elements (Sr:Ca and Ba:Ca) produced a lower classification accuracy (72.6%). Classification errors related mainly to tributaries in close proximity, a problem tempered by grouping these geochemically similar watersheds. Our results show that surveys of the elemental fingerprint of regional tributaries within a given region can provide critical information to determine the appropriate scale (tributary or watershed) for trace metal analysis of the hard-calcified parts of fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143320DOI Listing

Publication Analysis

Top Keywords

srca baca
12
elemental composition
8
trace metals
8
appropriate scale
8
baca mgca
8
mgca mnca
8
classification accuracy
8
classification
7
flowing river
4
river influence
4

Similar Publications

Patterns of trace elements deposition in Indo-Pacific humpback dolphin (Sousa chinensis) teeth reflect early life history: A pilot study.

Sci Total Environ

December 2024

School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China. Electronic address:

Understanding early life history events within a population is imperative for developing effective conservation and management practices, particularly for vulnerable species in degraded environments with high environmental variability. Here, we first investigated the lifetime record of trace element (TE) accumulation in the teeth of Indo-Pacific humpback dolphins from the Pearl River Estuary, China, using in-situ laser ablation-inductively coupled plasma-mass spectrometry microanalysis, and further explored the suitability of teeth TEs as bioindicators of critical life stages. A total of 26 TEs were detected in the teeth of eight dolphins, with concentrations ranging from 0.

View Article and Find Full Text PDF

Calcium isotope fractionation by intracellular amorphous calcium carbonate (ACC) forming cyanobacteria.

Geobiology

April 2024

Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique Des Matériaux et de Cosmochimie (IMPMC), Paris, France.

The formation of intracellular amorphous calcium carbonate (ACC) by various cyanobacteria is a widespread biomineralization process, yet its mechanism and importance in past and modern environments remain to be fully comprehended. This study explores whether calcium (Ca) isotope fractionation, linked to ACC-forming cyanobacteria, can serve as a reliable tracer for detecting these microorganisms in modern and ancient settings. Accordingly, we measured stable Ca isotope fractionation during Ca uptake by the intracellular ACC-forming cyanobacterium Cyanothece sp.

View Article and Find Full Text PDF

Humans have long been fascinated by the mysteries surrounding fish migrations and addressing these complex behaviors often requires large data sets. Biogeochemical tags, including trace elements and stable isotopes, are the most accessible biomarkers for tracking fish migrations. However, access to standardized biogeochemical tag data is rarely available for migratory fish, which limits our understanding of the evolutionary origins, drivers, timing, and corridors of migration.

View Article and Find Full Text PDF

Objectives: Intra-tooth patterns of trace elements barium (Ba) and strontium (Sr) have been used to infer human and nonhuman primate nursing histories, including australopithecine and Neanderthal juveniles. Here we contrast the two elemental models in first molars (M1s) of four wild baboons and explore the assumptions that underlie each.

Materials And Methods: Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was employed to create comprehensive calcium-normalized barium and strontium (Ba/Ca, Sr/Ca) maps of M1 enamel and dentine at 35 micron resolution.

View Article and Find Full Text PDF

Ecologists have long been interested in relevant techniques to track the field movement patterns of fish. The elemental composition of otoliths represents a permanent record of the growing habitats experienced by a fish throughout its lifetime and is increasingly used in the literature. The lack of a predictive and mechanistic understanding of the individual kinematics underlying ion incorporation/depletion limits our fine-scale temporal interpretation of the chemical signal recorded in the otolith.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: