Biogas slurry is widely used as a crop fertilizer due to its available nitrogen content. However, it remains unclear how biogas slurry application affects soil organic carbon (SOC) status and soil microbial community under typical agricultural systems. Here, under a wheat-rice field experiment, we examined the responses of SOC and soil bacterial and fungal communities to biogas slurry application, both with (BSS) and without (BS) straw return, relative to chemical nitrogen fertilizer with (CFS) and without (CF) straw return. The BS treatment significantly increased total organic carbon (TOC) at all soil depths (0-60 cm), compared to CF. Greater TOC occurred at 20-40 cm depth under BSS relative to all other treatments. However, straw return had no impact on soil TOC content under the CF and CFS treatments. Labile organic carbon (LOC) in the topsoil and recalcitrant organic carbon (ROC) at 20-60 cm depth was significantly greater under BS relative to CF. The bacterial class Gammaproteobacteria and family Hyphomicrobiaceae were found to be specifically abundant under biogas slurry application after one year of wheat-rice double cropping. Network analyses showed that the soil bacterial community under biogas slurry application was more complex than under chemical fertilizer application, while the opposite was true for the fungal community. Correlations between network modules and the SOC fractions indicated that biogas slurry application stimulated soil bacteria and fungi to participate in SOC cycling. The module functionality supports our speculation that soil microorganisms degraded the biogas slurry derived-ROC in the topsoil. Overall, we conclude that substitution of chemical fertilizer with biogas slurry can be beneficial for increasing SOC stocks and, in systems with straw return, enhancing straw decomposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.143786 | DOI Listing |
J Environ Manage
January 2025
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
December 2024
School of energy and environment, Anhui university of technology, Maanshan, People's Republic of China.
Biogas can be used for complementary load-balancing with renewable intermittent power, thus maintaining overall energy output stability. However, biogas load balancing load balancing is typically used in small-scale distributed energy systems, constrained by factors such as technology and land requirements, making it challenging to scale up. Therefore, this study proposes a closed-loop ecological cycle system, where biogas provides load leveling support for large-scale intermittent power sources in desertified regions dominated by animal husbandry.
View Article and Find Full Text PDFMolecules
November 2024
School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
Waste Manag
January 2025
University of Galway, University Road, H91 TK33, Galway, Ireland; Science Foundation Ireland MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland.
Consumption of coffee produces large amounts of waste in the form of spent coffee grounds (SCG), a lignocellulosic material rich in carbohydrates, proteins, and polyphenols. This abundant feedstock is promising in terms of biofuels and value-added product generation. This study investigated the impact of pretreatments, such as alkaline (NaOH), ultrasound, and static magnetic field, on SCG bioconversion in terms of biomolecule release, H potential and volatile fatty acids production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!