Spray-dried multidrug particles for pulmonary co-delivery of antibiotics with N-acetylcysteine and curcumin-loaded PLGA-nanoparticles.

Eur J Pharm Biopharm

Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany. Electronic address:

Published: December 2020

Nowadays, the resistance of bacterial biofilms towards the available antibiotics is a severe problem. Therefore, many efforts were devoted to develop new formulations using nanotechnology. We have developed an inhalable microparticle formulation using spray-drying combining multiple drugs: an antibiotic (tobramycin, ciprofloxacin or azithromycin), N-acetylcysteine (NAC), and curcumin (Cur). The use of PLGA nanoparticles (NP) also allowed incorporating curcumin to facilitate spray drying and modify the release of some compounds. The aerosolizable microparticles formulations were characterized in terms of size, morphology, and aerodynamic properties. Biocompatibility when tested on macrophage-like cells was acceptable after 20 h exposure for concentrations up to at least 32 µg/mL. Antibacterial activity of free drugs versus drugs in the multiple drug formulations was evaluated on P. aeruginosa in the same range. When co-delivered the efficacy of tobramycin was enhanced compared to the free drug for the 1 µg/mL concentration. The combinations of azithromycin and ciprofloxacin with NAC and Cur did not show an improved antibacterial activity. Bacteria-triggered cytokine release was not inhibited by free antibiotics, except for TNF-α. In contrast, the application of NAC and the addition of curcumin-loaded PLGA NPs showed a higher potential to inhibit TNF-α, IL-8, and IL-1β release. Overall, the approach described here allows simultaneous delivery of antibacterial, mucolytic, and anti-inflammatory compounds in a single inhalable formulation and may therefore pave the way for a more efficient therapy of pulmonary infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2020.10.010DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
8
spray-dried multidrug
4
multidrug particles
4
particles pulmonary
4
pulmonary co-delivery
4
co-delivery antibiotics
4
antibiotics n-acetylcysteine
4
n-acetylcysteine curcumin-loaded
4
curcumin-loaded plga-nanoparticles
4
plga-nanoparticles nowadays
4

Similar Publications

This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) is the leading infectious cause of death globally. Despite WHO recommendations for TB preventive therapy (TPT), challenges persist, including incompletion of treatment and adverse drug reactions (ADRs). There is limited data on the 3-month isoniazid and rifapentine (3HP) pharmacokinetics, pharmacogenomics and their relation with ADRs.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial and antioxidant activities of caffeic acid grafted ε-polylysine.

Int J Biol Macromol

December 2024

School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.

The antioxidant activity of ε-polylysine (EPL) can be enhanced by grafting phenolic compound caffeic acid (CA) onto its amino groups. To enhance the antioxidant activity of EPL, this study synthesized caffeic acid-ε-polylysine conjugate (CA-EPL) by grafting CA onto EPL using carbodiimide coupling reaction. Fourier transform infrared spectroscopy, H nuclear magnetic resonance (NMR) spectroscopy confirmed the successful conjugation of caffeic acid and ε-polylysine.

View Article and Find Full Text PDF

Indoles as promising Therapeutics: A review of recent drug discovery efforts.

Bioorg Chem

December 2024

Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.

Indole, a fundamental heterocyclic core, has emerged as a cornerstone in the medicinal chemistry due to its diverse biological activities and structural versatility. This aromatic compound, present in natural as well as synthetic compounds, offers a versatile platform for the drug discovery. By strategically incorporating functional groups or pharmacophores, researchers can tailor indole-derivatives to target a wide range of diseases.

View Article and Find Full Text PDF

Infections caused by gram-negative pathogens continue to be a major risk to human health because of the innate antibiotic resistance endowed by their unique cell membrane architecture. Nature has developed an elegant solution to target gram-negative strains, namely by conjugating toxic antibiotic warheads to a suitable carrier to facilitate the active import of the drug to a specific target organism. Microcin C7 (McC) is a Trojan horse peptide-conjugated antibiotic that specifically targets enterobacteria by exploiting active import through oligopeptide transport systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!