Sample preparation is one of the crucial steps in the analytical chemistry including human biomonitoring studies. Although there are several traditional approaches available, solid-phase microextraction is emerged as one of the pioneering techniques due to its simplicity, rapidness, wide applicability, and miniaturization of traditional sample preparation (e.g., use of less or no organic solvents). There are few earlier review articles available on the advancements in solid-phase microextraction and its use for the measurement of environmental chemicals in various types of environmental samples. However, a collective information on applicability and current usage of solid-phase microextraction for the human biomonitoring of environmental chemicals are scarce, nonetheless, rising demands on innovative analytical approaches for human biomonitoring studies. Hence, in this review article, we covered the application of solid-phase microextraction as extraction/purification methods for more than 15 classes of environmental chemicals to assess their respective exposure levels and associated health outcomes in various human population reported across the globe. Further, a detailed discussion on various types of matrix used, nature of coupled analytical instrumentations, and limitations and future perspectives of solid-phase microextraction for human biomonitoring studies is presented in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.202000830 | DOI Listing |
Metabolites
December 2024
CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.
Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.
View Article and Find Full Text PDFFood Chem
December 2024
School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China.
In this study, the dynamic effects of ultrasonic treatment (0-400 W) on the volatile flavor compounds of pumpkin juice under different storage periods were investigated systematically using a combination of headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) techniques. A total of 139 and 46 volatile organic compounds (VOCs) were identified by GC-MS and GC-IMS, respectively. The results indicated that complex changes in volatile components occurred during storage.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Center of High Altitude Medicine West China Hospital, Sichuan University Chengdu China.
Solid Phase Microextraction-Gas Chromatography Triple Quadrupole Mass Spectrometry (SPME-GC-TQ/MS) was optimized and validated to specifically analyze aldehydes and furans after drying by conventional as well as modern pre-drying technique i.e. pulsed electric field (PEF).
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
This paper introduces an innovative technique for extracting pesticides from herbal infusions using a core-shell magnetic adsorbent (i.e., Cu-BTC@FeO) where achieving a notable enrichment factor for the target pesticides by coupling with a dispersive liquid-liquid microextraction method.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany. Electronic address:
Odor-active compounds are major quality parameters in food and other consumer products. In the analysis of odorants, gas chromatography (GC) plays a dominant role and is particularly indispensable for odorant screening by GC-olfactometry (GC-O). Whereas artifact formation during workup before GC analysis has been widely discussed, artifact formation during GC injection has not been adequately addressed so far.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!