Bile salts play a pivotal role in lipid homeostasis, are sensed by specialized receptors, and have been implicated in various disorders affecting the gut or liver. They may play a role either as culprit or as potential panacea. Four very efficient transporters mediate most of the hepatic and intestinal bile salt uptake and efflux, and are each essential for the efficient enterohepatic circulation of bile salts. Starting from the intestinal lumen, conjugated bile salts cross the otherwise impermeable lipid bilayer of (primarily terminal ileal) enterocytes through the apical sodium-dependent bile acid transporter (gene SLC10A2) and leave the enterocyte through the basolateral heteromeric organic solute transporter, which consists of an alpha and beta subunit (encoded by SLC51A and SLC51B). The Na -taurocholate cotransporting polypeptide (gene SLC10A1) efficiently clears the portal circulation of bile salts, and the apical bile salt export pump (gene ABCB11) pumps the bile salts out of the hepatocyte into primary bile, against a very steep concentration gradient. Recently, individuals lacking either functional Na -taurocholate cotransporting polypeptide or organic solute transporter have been described, completing the quartet of bile acid transport deficiencies, as apical sodium-dependent bile acid transporter and bile salt export pump deficiencies were already known for years. Novel pathophysiological insights have been obtained from knockout mice lacking functional expression of these genes and from pharmacological transporter inhibition in mice or humans. Conclusion: We provide a concise overview of the four main bile salt transport pathways and of their status as possible targets of interventions in cholestatic or metabolic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252069 | PMC |
http://dx.doi.org/10.1002/hep.31651 | DOI Listing |
Toxicol Mech Methods
January 2025
Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, 425405 Maharashtra, India.
Adverse drug reactions (ADR) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics. WHO's definition of an adverse drug reaction as a response to a drug that is noxious and unintended and occurs at doses normally used in man for the prophylaxis, diagnosis or therapy of disease, or for modification of physiological function. This definition underscores the importance of monitoring and mitigating unintended drug effects, particularly for widely used medications like valproic acid (VPA).
View Article and Find Full Text PDFThrough biochemical transformation of host-derived bile acids (BAs), gut bacteria mediate host-microbe crosstalk and sit at the interface of nutrition, the microbiome, and disease. BAs play a crucial role in human health by facilitating the absorption of dietary lipophilic nutrients, interacting with hormone receptors to regulate host physiology, and shaping gut microbiota composition through antimicrobial activity. Bile acid deconjugation by bacterial bile salt hydrolase (BSH) has long been recognized as the first necessary BA modification required before further transformations can occur.
View Article and Find Full Text PDFLiver Int
February 2025
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Background And Aims: Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood.
Methods: Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring.
Results: Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions.
Molecules
January 2025
Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan.
Our previous study demonstrated that γ-cyclodextrin (γ-CD)-perilla oil inclusion complexes increase plasma α-linolenic acid and eicosapentaenoic acid levels in healthy rats without adverse effects. The present study examined the effects of perilla oil, γ-CD, and their inclusion complexes on rats fed cholic acid (CA) to mimic the elevated gastrointestinal 12-hydroxylated (12OH) bile acid levels in high-fat diet-fed rats. Rats fed CA (CA group) tended to have higher AST, ALT, plasma total cholesterol (T-CHO), and triglyceride (TG) levels compared to controls fed a standard diet without CA.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan.
Bile salt hydrolase (BSH), a probiotic-related enzyme with cholesterol-assimilating and anti-hypercholesterolemic abilities, has been isolated from intestinal bacteria; however, BSH activity of bacteria in bile-salt-free (non-intestinal) environments is largely unknown. Here, we aimed to identify BSH from non-intestinal and characterize its enzymatic function. We successfully isolated a plasmid-encoded () from , and the recombinant EfpBSH showed BSH activity that preferentially hydrolyzed taurine-conjugated bile salts, unlike the activity of known BSHs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!