Dopamine depletion in the axons of Parkinson's disease (PD) patients precedes depletion in cell bodies thus proposing that macroscopic connectivity can be used to understand disease mechanism. A novel multivariate functional connectivity analysis, based on high order coherence among four fMRI BOLD signals was applied on resting-state fMRI data of controls and PD patients (OFF and ON medication states) and unidirectional multiple-region pathways in the sensorimotor system were identified. Pathways were classified as "preserved" (unaffected by the disease), "damaged" (not observed in patients) and "corrected" (observed in controls and in PD-ON state). The majority of all pathways were feedforward, most of them with the pattern "S1→M1→SMA." Of these pathways, 67% were "damaged," 28% "preserved," and 5% "corrected." Prefrontal cortex (PFC) afferent and efferent pathways that corresponded to goal directed and habitual activities corresponded to recurrent circuits. Eighty-one percent of habitual afferent had internal cue (i.e., M1→S1→), of them 79% were "damaged" and the rest "preserved." All goal-directed afferent had external cue (i.e., S1→M1→) with third "damaged," third "preserved," and third "corrected." Corrected pathways were initiated in the dorsolateral PFC. Reduced connectivity of the SMA and PFC resulted from reduced sensorimotor afferent to these regions. Reduced sensorimotor internal cues to the PFC resulted with reduced habitual processes. Levodopa effects were for pathways that started in region reach with dopamine receptors. This methodology can enrich understudying of PD mechanisms in other (e.g., the default mode network) systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.15053 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
Stress is linked to oxidative imbalance, neuroendocrine system malfunction, and cognitive dysfunction. It is a recognized cause of neuropsychiatric diseases. Natural flavonoid apigenin (API) has neuroprotective and antidepressant properties, but little is known about its potential in restoring memory function under stress-related circumstances.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan.
Background: Tramadol (TRA) is an opioid that is used to manage moderate to severe pain. Long-term use of TRA can lead to the development of opioid use disorder.
Objectives: This study investigates the role of forced exercise in reducing TRA-seeking behavior.
J Affect Disord
January 2025
Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116021, China. Electronic address:
Background: Accelerated continuous theta burst stimulation (acTBS) is a more intensive and rapid protocol than continuous theta burst stimulation (cTBS). However, it remains uncertain whether acTBS exhibits anxiolytic effects. The aim of this study was to investigate the impact of acTBS on anxiety model mice and elucidate the underlying mechanisms involved, in order to provide a more comprehensive understanding of its effects.
View Article and Find Full Text PDFClin Kidney J
January 2025
Nephrology and Dialysis Unit, Department of Advanced Medical and Surgical Sciences, University of Campania, Naples, Italy.
Background: Sodium-glucose co-transporter-2 inhibitors (SGLT2i) are recommended for reducing the renal and cardiovascular risk in patients with chronic kidney disease (CKD) based on the positive results reported by clinical trials. However, real-world data on the efficacy and the safety of these drugs in CKD population followed in nephrology setting are lacking.
Methods: We report the effects of dapagliflozin in CKD patients by using data collected during a learning program in which 105 nephrologists added dapagliflozin (10 mg/day) to consecutive patients referred to their renal clinics.
Front Psychiatry
January 2025
School of Education Science, Jiangsu Normal University, Xuzhou, China.
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairments in social interaction, often manifested in facial recognition deficits. These deficits hinder individuals with ASD from recognizing facial identities and interpreting emotions, further complicating social communication. This review explores the neural mechanisms underlying these deficits, focusing on both functional anomalies and anatomical differences in key brain regions such as the fusiform gyrus (FG), amygdala, superior temporal sulcus (STS), and prefrontal cortex (PFC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!