A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FANCD2 and HES1 suppress inflammation-induced PPARɣ to prevent haematopoietic stem cell exhaustion. | LitMetric

FANCD2 and HES1 suppress inflammation-induced PPARɣ to prevent haematopoietic stem cell exhaustion.

Br J Haematol

Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.

Published: February 2021

The Fanconi anaemia protein FANCD2 suppresses PPAR to maintain haematopoietic stem cell's (HSC) function; however, the underlying mechanism is not known. Here we show that FANCD2 acts in concert with the Notch target HES1 to suppress inflammation-induced PPAR in HSC maintenance. Loss of HES1 exacerbates FANCD2-KO HSC defects. However, deletion of HES1 does not cause more severe inflammation-mediated HSC defects in FANCD2-KO mice, indicating that both FANCD2 and HES1 are required for limiting detrimental effects of inflammation on HSCs. Further analysis shows that both FANCD2 and HES1 are required for transcriptional repression of inflammation-activated PPARg promoter. Inflammation orchestrates an overlapping transcriptional programme in HSPCs deficient for FANCD2 and HES1, featuring upregulation of genes in fatty acid oxidation (FAO) and oxidative phosphorylation. Loss of FANCD2 or HES1 augments both basal and inflammation-primed FAO. Targeted inhibition of PPAR or the mitochondrial carnitine palmitoyltransferase-1 (CPT1) reduces FAO and ameliorates HSC defects in inflammation-primed HSPCs deleted for FANCD2 or HES1 or both. Finally, depletion of PPARg or CPT1 restores quiescence in these mutant HSCs under inflammatory stress. Our results suggest that this novel FANCD2/HES1/PPAR axis may constitute a key component of immunometabolic regulation, connecting inflammation, cellular metabolism and HSC function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856217PMC
http://dx.doi.org/10.1111/bjh.17230DOI Listing

Publication Analysis

Top Keywords

fancd2 hes1
24
hsc defects
12
fancd2
8
hes1 suppress
8
suppress inflammation-induced
8
haematopoietic stem
8
hsc function
8
hes1
8
hes1 required
8
hsc
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!