Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680560 | PMC |
http://dx.doi.org/10.1007/s12020-020-02551-7 | DOI Listing |
Braz J Biol
January 2025
Near East University, Operational Research Center in Healthcare, Mersin, Turkey.
Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.
Unlabelled: Post-acute sequelae of COVID-19 involves several organs, but its basis remains poorly understood. Some infected cells in mice survive the acute infection and persist for extended periods in the respiratory tract but not in other tissues. Here, we describe two experimental models of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection to assess the effect of viral virulence on previously infected cells.
View Article and Find Full Text PDFJ Virol
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.
Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!