Snow mold resistance is a complex quantitative trait highly affected by environmental conditions during winter that must be addressed by resistance breeding. Snow mold resistance in winter cereals is an important trait for many countries in the Northern Hemisphere. The disease is caused by at least four complexes of soilborne fungi and oomycetes of which Microdochium nivale and M. majus are among the most common pathogens. They have a broad host range covering all winter and spring cereals and can basically affect all plant growth stages and organs. Their attack leads to a low germination rate, and/or pre- and post-emergence death of seedlings after winter and, depending on largely unknown environmental conditions, also to foot rot, leaf blight, and head blight. Resistance in winter wheat and triticale is governed by a multitude of quantitative trait loci (QTL) with mainly additive effects highly affected by genotype × environment interaction. Snow mold resistance interacts with winter hardiness in a complex way leading to a co-localization of resistance QTLs with QTLs/genes for freezing tolerance. In practical breeding, a multistep procedure is necessary with (1) freezing tolerance tests, (2) climate chamber tests for snow mold resistance, and (3) field tests in locations with and without regularly occurring snow cover. In the future, resistance sources should be genetically characterized also in rye by QTL mapping or genome-wide association studies. The development of genomic selection procedures should be prioritized in breeding research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843483PMC
http://dx.doi.org/10.1007/s00122-020-03725-7DOI Listing

Publication Analysis

Top Keywords

snow mold
20
mold resistance
16
resistance
9
winter cereals
8
resistance breeding
8
breeding snow
8
quantitative trait
8
environmental conditions
8
resistance winter
8
freezing tolerance
8

Similar Publications

Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .

View Article and Find Full Text PDF

Background: Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens.

View Article and Find Full Text PDF

A Gram-stain-positive, aerobic, yellow-pigmented, catalase-positive, oxidase-positive, non-motile with no flagella and irregularly rod-shaped, denominated strain YIM 134122, was isolated from a Stereocaulon tomentosum Fr. lichen gathered on Baima Snow Mountain in Diqing Tibetan Autonomous Prefecture, Yunnan Province, China. The novel strain grew at pH 6.

View Article and Find Full Text PDF

Biodiversity of Herbivores Triggers Species Differentiation of Coprophilous Fungi: A Case Study of Snow Inkcap ( sect. ).

J Fungi (Basel)

December 2024

Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.

Coprophilous species of sect. , commonly known as "snow inkcap", are widespread in pastoral areas; however, wide sampling approaches are needed to discover new taxa and to clarify the taxonomic status of the so-called "snow inkcap". Nationwide field work was conducted in China with a detailed record collected of the distribution and the animal origin of the dung.

View Article and Find Full Text PDF

Both rhizospheric soil microbes and shoot litter input can have profound effects on plant performance; however, their interactive effects on plants in Cd-contaminated soils remain poorly understood. We grew an invasive hyperaccumulator, , in sterilized and unsterilized rhizosphere soil without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter from in soil with low (5 mg kg) or high (10 mg kg) concentrations of Cd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!