Changes in measures of consciousness during anaesthesia of one hemisphere (Wada test).

Neuroimage

Brain Signalling Group, Section for Physiology, Department of Molecular Medicine, IMB, University of Oslo, 0317 Oslo, Norway. Electronic address:

Published: February 2021

Background: In the Wada test, one hemisphere is selectively anaesthetised by unilateral intracarotid injection of a fast-acting anaesthetic agent. This gives a unique opportunity to observe the functions and physiological activity of one hemisphere while anaesthetising the other, allowing direct comparisons between brain states and hemispheres that are not possible in any other setting.

Aim: To test whether potential measures of consciousness would be affected by selective anaesthesia of one hemisphere, and reliably distinguish the states of the anesthetised and non-anesthetised hemispheres.

Methods: We analysed EEG data from 7 patients undergoing Wada-tests in preparation for neurosurgery and computed several measures reported to correlate with the state of consciousness: power spectral density, functional connectivity, and measures of signal diversity. These measures were compared between conditions (normal rest vs. unilateral anaesthesia) and hemispheres (injected vs. non-injected), and used with a support vector machine to classify the state and site of injection objectively from individual patient's recordings.

Results: Although brain function, assessed behaviourally, appeared to be substantially altered only on the injected side, we found large bilateral changes in power spectral density for all frequency bands tested, and functional connectivity changed significantly both between and within both hemispheres. Surprisingly, we found no statistically significant differences in the measures of signal diversity between hemispheres or states, for the group of 7 patients, although 4 of the individual patients showed a significant decrease in signal diversity on the injected side. Nevertheless, including signal diversity measures improved the classification results, indicating that these measures carry at least some non-redundant information about the condition and injection site. We propose that several of these results may be explained by conduction of activity, via the corpus callosum, from the injected to the contralateral hemisphere and vice versa, without substantially affecting the function of the receiving hemisphere, thus reflecting what we call "cross-state unreceptiveness".

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.117566DOI Listing

Publication Analysis

Top Keywords

signal diversity
16
measures consciousness
8
anaesthesia hemisphere
8
wada test
8
power spectral
8
spectral density
8
functional connectivity
8
measures signal
8
diversity measures
8
injected side
8

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques.

View Article and Find Full Text PDF

The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation.

View Article and Find Full Text PDF

ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury.

Cell Death Dis

January 2025

Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China.

UVB irradiation induces diverse modalities of regulatory cell death in keratinocytes. Recently, the pattern of coexistence of pyroptosis, apoptosis, and necroptosis has been termed PANoptosis; however, whether PANoptosis occurs in keratinocytes in UVB-induced skin injury remains unclear. We observed that the key molecules of GSDMD-mediated pyroptosis, apoptosis, and necroptosis, which are N-terminal GSDMD, cleaved caspase-3/PARP, and phosphorylated MLKL, respectively, were elevated in keratinocytes of UVB-challenged mice and human skin tissue.

View Article and Find Full Text PDF

Circadian Rhythm, Hypoxia, and Cellular Senescence: From Molecular Mechanisms to Targeted Strategies.

Eur J Pharmacol

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!