Arabidopsis immune-associated nucleotide-binding genes repress heat tolerance at the reproductive stage by inhibiting the unfolded protein response and promoting cell death.

Mol Plant

The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA. Electronic address:

Published: February 2021

Plants are vulnerable to heat stress, especially during reproductive development. The heat shock response (HSR) in the cytosol and nucleus, as well as the unfolded protein response (UPR) in the endoplasmic reticulum (ER), are two mechanisms that enable plants to survive heat stress. Excessive heat or ER stresses lead to cell death when the UPR cannot repair stress damage, but the means by which cell survival or death is determined remains unclear. In this study, we used a genome-wide association study (GWAS) to identify that a cluster of five Immune-associated nucleotide-binding protein (IAN) genes (IAN2 to IAN6) is responsible for variation in heat tolerance at the reproductive stage in Arabidopsis thaliana. These IAN genes have both unique and overlapping functions in the negative regulation of heat tolerance, and their loss of function singly or in combination confers increased heat tolerance, measured by a lower number of barren siliques and a higher seedling survival rate under heat. The loss of rice IAN1 gene function also leads to enhanced heat tolerance, suggesting a conserved function of plant IANs. Transcriptome analysis revealed enhanced expression of HSR and UPR genes, as well as reduced cell death, under heat and ER stress in the mutant of IAN6, a major effect member in Arabidopsis. Furthermore, the IAN proteins were found to promote cell death induced by heat stress, ER stress, and cell death-inducing molecules. Thus, the Arabidopsis IAN genes repress heat tolerance, probably through the HSR and UPR and by enhancing the cell death pathway. The IAN2 to IAN6 proteins are partially localized to the ER, suggesting a direct role in the UPR and UPR-mediated cell death. In addition, a natural IAN6 variant from more heat-tolerant Arabidopsis accessions confers greater heat tolerance and induces less cell death compared with the natural variant from less heat-tolerant accessions. The heat-tolerant IAN6 variant is associated with a higher maximum temperature of the warmest month at its collection sites compared with the heat-sensitive variant. Taken together, these results reveal an important role of Arabidopsis IAN2 to IAN6 genes in the regulation of the HSR, UPR, and cell death, and suggest that their natural variations have adaptive functions in heat tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2020.11.010DOI Listing

Publication Analysis

Top Keywords

heat tolerance
32
cell death
32
heat stress
16
heat
15
ian genes
12
ian2 ian6
12
hsr upr
12
cell
10
death
9
immune-associated nucleotide-binding
8

Similar Publications

Exertional heat stroke (EHS) is a life-threatening condition characterized by hyperthermia and multi-organ dysfunction, often associated with intestinal barrier disruption. This study evaluated the protective effects of Huoxiang Zhengqi Dropping Pills (HXZQD) against EHS in a rat model. HXZQD was administered via oral gavage at low, medium, and high doses, followed by EHS induction through exercise under high-temperature and high-humidity conditions.

View Article and Find Full Text PDF

Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.

View Article and Find Full Text PDF

Background: Patients with obstructive sleep apnoea (OSA) are considered more sensitive to opioids and at increased risk of opioid-induced respiratory depression. Nonetheless, whether OSA treatment (continuous positive airway pressure, CPAP; or bilevel positive airway pressure, BIPAP) modifies this risk remains unknown. Greater opioid sensitivity can arise from altered pharmacokinetics or pharmacodynamics.

View Article and Find Full Text PDF

Microbiome-animal host symbioses are ubiquitous in nature. Animal-associated microbiomes can play a crucial role in host physiology, health and resilience to environmental stressors. As climate change drives rising global temperatures and increases the frequency of thermal extremes, microbiomes are emerging as a new frontier in buffering vulnerable animals against temperature fluctuations.

View Article and Find Full Text PDF

Cross-protection occurs when exposure to one stressor confers heightened tolerance against a different stressor. Alternatively, exposure to one stressor could result in reduced tolerance against other stressors. Although cross-protection has been documented in a wide range of taxa at juvenile and adult life stages, whether early developmental exposure to a stressor confers cross-protection or reduced tolerance to other stressors later in life through developmental plasticity remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!