Objective: The aim of the present study was to evaluate the expressions of CXCL5, CXCL8, and CXCL10 in periodontal cells and tissues in response to microbial signals and/or biomechanical forces.

Methods: Human gingival biopsies from inflamed and healthy sites were used to examine the chemokine expressions and protein levels by real-time PCR and immunohistochemistry. The chemokines were also investigated in gingival biopsies from rats submitted to experimental periodontitis and/or tooth movement. Furthermore, chemokine levels were determined in human periodontal fibroblasts stimulated by the periodontopathogen Fusobacterium nucleatum and/or constant tensile forces (CTS) by real-time PCR and ELISA. Additionally, gene expressions were evaluated in periodontal fibroblasts exposed to F. nucleatum and/or CTS in the presence and absence of a MAPK inhibitor by real-time PCR.

Results: Increased CXCL5, CXCL8, and CXCL10 levels were observed in human and rat gingiva from sites of inflammation as compared with periodontal health. The rat experimental periodontitis caused a significant (p<0.05) increase in alveolar bone resorption, which was further enhanced when combined with tooth movement. In vitro, F. nucleatum caused a significant upregulation of CXCL5, CXCL8, and CXCL10 at 1 day. Once the cells were exposed simultaneously to F. nucleatum and CTS, the chemokines regulation was significantly enhanced. The transcriptional findings were also observed at protein level. Pre-incubation with the MEK1/2 inhibitor significantly (p<0.05) inhibited the stimulatory actions of F. nucleatum either alone or in combination with CTS on the expression levels of CXCL5, CXCL8, and CXCL10 at 1d.

Conclusions: Our data provide original evidence that biomechanical strain further increases the stimulatory actions of periodontal bacteria on the expressions of these chemokines. Therefore, biomechanical loading in combination with periodontal infection may lead to stronger recruitment of immunoinflammatory cells to the periodontium, which might result in an aggravation of periodontal inflammation and destruction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2020.151648DOI Listing

Publication Analysis

Top Keywords

cxcl5 cxcl8
12
cxcl8 cxcl10
12
gingival biopsies
8
real-time pcr
8
experimental periodontitis
8
periodontal fibroblasts
8
nucleatum and/or
8
cxcl10 regulation
4
regulation bacteria
4
bacteria mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!