AI Article Synopsis

  • The study aimed to investigate how epicardial adipose tissue (EAT) seen on chest CT relates to the severity of pneumonia and outcomes for patients with COVID-19.
  • It involved analyzing data from 109 COVID-19 patients to examine the connection between lung abnormalities, EAT volume, EAT attenuation, and various health metrics.
  • The findings revealed that higher EAT volume and attenuation were significant predictors of worse outcomes, such as clinical deterioration or death, in these patients.

Article Abstract

Aim: We sought to examine the association of epicardial adipose tissue (EAT) quantified on chest computed tomography (CT) with the extent of pneumonia and adverse outcomes in patients with coronavirus disease 2019 (COVID-19).

Methods: We performed a post-hoc analysis of a prospective international registry comprising 109 consecutive patients (age 64 ± 16 years; 62% male) with laboratory-confirmed COVID-19 and noncontrast chest CT imaging. Using semi-automated software, we quantified the burden (%) of lung abnormalities associated with COVID-19 pneumonia. EAT volume (mL) and attenuation (Hounsfield units) were measured using deep learning software. The primary outcome was clinical deterioration (intensive care unit admission, invasive mechanical ventilation, or vasopressor therapy) or in-hospital death.

Results: In multivariable linear regression analysis adjusted for patient comorbidities, the total burden of COVID-19 pneumonia was associated with EAT volume (β = 10.6, p = 0.005) and EAT attenuation (β = 5.2, p = 0.004). EAT volume correlated with serum levels of lactate dehydrogenase (r = 0.361, p = 0.001) and C-reactive protein (r = 0.450, p < 0.001). Clinical deterioration or death occurred in 23 (21.1%) patients at a median of 3 days (IQR 1-13 days) following the chest CT. In multivariable logistic regression analysis, EAT volume (OR 5.1 [95% CI 1.8-14.1] per doubling p = 0.011) and EAT attenuation (OR 3.4 [95% CI 1.5-7.5] per 5 Hounsfield unit increase, p = 0.003) were independent predictors of clinical deterioration or death, as was total pneumonia burden (OR 2.5, 95% CI 1.4-4.6, p = 0.002), chronic lung disease (OR 1.3 [95% CI 1.1-1.7], p = 0.011), and history of heart failure (OR 3.5 [95% 1.1-8.2], p = 0.037).

Conclusions: EAT measures quantified from chest CT are independently associated with extent of pneumonia and adverse outcomes in patients with COVID-19, lending support to their use in clinical risk stratification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676319PMC
http://dx.doi.org/10.1016/j.metabol.2020.154436DOI Listing

Publication Analysis

Top Keywords

eat volume
12
epicardial adipose
8
adipose tissue
8
extent pneumonia
8
pneumonia adverse
8
adverse outcomes
8
outcomes patients
8
covid-19 pneumonia
8
eat
5
tissue associated
4

Similar Publications

Epicardial Adipose Tissue from Computed Tomography: a Missing Link in Premature Coronary Artery Disease?

Eur Heart J Cardiovasc Imaging

January 2025

Sorbonne Université, unité d'imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, ACTION Group, Paris, France.

Purpose: Epicardial adipose tissue (EAT) could contribute to the specific atherosclerosis profile observed in premature coronary artery disease (pCAD) characterized by accelerated plaque burden (calcified and non-calcified), high risk plaque features (HRP) and ischemic recurrence. Our aims were to describe EAT volume and density in pCAD compared to asymptomatic individuals matched on CV risk factors and to study their relationship with coronary plaque severity extension and vulnerability.

Materials And Methods: 208 patients who underwent coronary computed tomography angiography (CCTA) were analyzed.

View Article and Find Full Text PDF

Purpose: Hemorrhagic transformation (HT) is a severe complication in patients with acute ischemic stroke (AIS) undergoing intravenous thrombolysis therapy (IVT). Epicardial adipose tissue (EAT) contributes to the development of AIS and the disruption of the blood-brain barrier. This study aims to investigate the relationship between EAT and the risk of HT, as well as functional outcomes, in AIS patients treated with IVT.

View Article and Find Full Text PDF
Article Synopsis
  • Epicardial adipose tissue (EAT) is linked to atrial fibrillation (AF) and atrial fibrosis, but many AF patients show no signs of left atrial (LA) fibrosis. This study compared EAT levels in AF patients without LA fibrosis to matched controls without AF.
  • AF patients without LA fibrosis had significantly higher total and regional volumes of EAT compared to controls, indicating that EAT may play a role in AF development even when LA fibrosis is absent.
  • The study found no differences in EAT volumes between AF patients with and without LA fibrosis and no significant link between EAT volume and AF recurrence after catheter ablation.
View Article and Find Full Text PDF

Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease.

Clin Radiol

November 2024

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:

Aim: To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction.

Materials And Methods: One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software.

View Article and Find Full Text PDF

Purpose: This study aims to investigate the relationship between epicardial adipose tissue (EAT) and left atrial function in patients with preserved ejection fraction heart failure (HFpEF).

Methods: We conducted a cross-sectional study involving 113 patients diagnosed with HFpEF and 48 control subjects without heart failure. Echocardiography was performed to assess EAT thickness and left atrial function was quantified using Autostrain left atrium (LA), including left atrial strain during reservoir phase (LASr), left atrial strain during conduit phase (LAScd), and left atrial strain during contraction phase (LASct).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!