Objectives: This study aimed to systematically investigate whether plaque autofluorescence properties assessed with intravascular fluorescence lifetime imaging (FLIm) can provide qualitative and quantitative information about intimal composition and improve the characterization of atherosclerosis lesions.

Background: Despite advances in cardiovascular diagnostics, the analytic tools and imaging technologies currently available have limited capabilities for evaluating in situ biochemical changes associated with luminal surface features. Earlier studies of small number of samples have shown differences among the autofluorescence lifetime signature of well-defined lesions, but a systematic pixel-level evaluation of fluorescence signatures associated with various histological features is lacking and needed to better understand the origins of fluorescence contrast.

Methods: Human coronary artery segments (n = 32) were analyzed with a bimodal catheter system combining multispectral FLIm with intravascular ultrasonography compatible with in vivo coronary imaging. Various histological components present along the luminal surface (200-μm depth) were systematically tabulated (12 sectors) from each serial histological section (n = 204). Morphological information provided by ultrasonography allowed for the accurate registration of imaging data with histology data. The relationships between histological findings and FLIm parameters obtained from 3 spectral channels at each measurement location (n = 33,980) were characterized.

Results: Our findings indicate that fluorescence lifetime from different spectral bands can be used to quantitatively predict the superficial presence of macrophage foam cells (mFCs) (area under the receiver-operator characteristic curve: 0.94) and extracellular lipid content in advanced lesions (lifetime increase in 540-nm band), detect superficial calcium (lifetime decrease in 450-nm band area under the receiver-operator characteristic curve: 0.90), and possibly detect lesions consistent with active plaque formation such as pathological intimal thickening and healed thrombus regions (lifetime increase in 390-nm band).

Conclusions: Our findings indicate that autofluorescence lifetime provides valuable information for characterizing atherosclerotic lesions in coronary arteries. Specifically, FLIm can be used to identify key phenomena linked with plaque progression (e.g., peroxidized-lipid-rich mFC accumulation and recent plaque formation).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116358PMC
http://dx.doi.org/10.1016/j.jcmg.2020.10.004DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetime
12
plaque progression
8
intravascular fluorescence
8
lifetime
8
luminal surface
8
autofluorescence lifetime
8
findings indicate
8
area receiver-operator
8
receiver-operator characteristic
8
characteristic curve
8

Similar Publications

Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.

Biophys Rep (N Y)

January 2025

UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA,; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.

Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells.

View Article and Find Full Text PDF

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy, a therapeutic approach utilizing low-level light, has garnered significant attention for its potential to modulate various biological processes. This study aimed at optimizing and investigating the effects of PBM on angiogenesis and mitochondrial metabolic activity. In vitro experiments using human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) were performed to assess PBM's impacts on cell migration, proliferation, endogenous protoporphyrin IX production, mitochondrial membrane potential, Rhodamine 123 fluorescence lifetime, mitochondrial morphology, and oxygen consumption.

View Article and Find Full Text PDF

: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. : This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!