A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering. | LitMetric

Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering.

Enzyme Microb Technol

School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou 646000, China. Electronic address:

Published: December 2020

Phytases are important industrial enzymes widely used as feed additives to hydrolyze phytate and release inorganic phosphate. In this study, a phytase gene PhyBL isolated from Bacillus licheniformis WHU was cloned and expressed in Escherichia coli. PhyBL showed the highest activity at pH 7.0 and retained more than 40 % of its activity at a wide temperature range from 35 to 65 °C. Ca significantly affected the stability and activity of the enzyme. We further improved the stability of PhyBL through extensively disulfide engineering. After constructing and screening a series of variants, an enhanced stable G197C/A358C variant was obtained. The G197C/A358C variant had a half-life at 60℃ roughly 3.8-fold longer than the wild type. In addition, the G197C/A358C variant also showed enhanced proteolytic resistance to pepsin and trypsin. The potential mechanism underlying these improvements was investigated by molecular dynamics analysis. Our results suggest that the G197C/A358C variant may have potential application as an additive enzyme in aquaculture feed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2020.109679DOI Listing

Publication Analysis

Top Keywords

g197c/a358c variant
16
bacillus licheniformis
8
licheniformis whu
8
characterization thermostable
4
thermostable phytase
4
phytase bacillus
4
whu stabilization
4
stabilization enzyme
4
enzyme disulfide
4
disulfide bond
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!