First example of engineered β-cyclodextrinylated MEMS devices for volatile pheromone sensing of olive fruit pests.

Biosens Bioelectron

Technical Research Center, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India. Electronic address:

Published: February 2021

Olive oil is more preferred than other vegetable oils because of the increasing health concern among people throughout the world. The major hindrance in large-scale production of olive oil is olive fruit pests which cause serious economic damage to the olive orchards. This requires careful monitoring and timely application of suitable remedies before pest infestation. Herein we demonstrate efficacious utilization of covalently functionalized β-cyclodextrinylated MEMS devices for selective and sensitive detection of female sex pheromone of olive fruit pest, Bactocera oleae. Two of the MEMS devices, silicon dioxide surface-micromachined cantilever arrays and zinc oxide surface-microfabricated interdigitated circuits, have been used to selectively capture the major pheromone component, 1,7-dioxaspiro[5,5]undecane. The non-covalent capture of olive pheromones inside the β-cyclodextrin cavity leads to the reduction of resonant frequency of the cantilevers, whereas an increase in resistance has been found in case of zinc oxide derived MEMS devices. Sensitivity of the MEMS devices towards the olive pheromone was found to be directly correlated with the increasing availability of β-cyclodextrin moieties over the surface of the devices and thus the detection limit of the devices has been achieved to a value as low as 0.297 ppq of the olive pheromone when the devices were functionalized with one of the standardized protocols. Overall, the reversible usability and potential capability of the suitably functionalized MEMS devices to selectively detect the presence of female sex pheromone of olive fruit fly before the onset of pest infestation in an orchard makes the technology quite attractive for viable commercial application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2020.112728DOI Listing

Publication Analysis

Top Keywords

mems devices
24
olive fruit
16
olive
10
devices
9
β-cyclodextrinylated mems
8
fruit pests
8
olive oil
8
pest infestation
8
female sex
8
sex pheromone
8

Similar Publications

Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.

As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.

View Article and Find Full Text PDF

Silicon photonic MEMS switches based on split waveguide crossings.

Nat Commun

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

The continuous push for high-performance photonic switches is one of the most crucial premises for the sustainable scaling of programmable and reconfigurable photonic circuits for a wide spectrum of applications. Conventional optical switches rely on the perturbative mechanisms of mode coupling or mode interference, resulting in inherent bottlenecks in their switching performance concerning size, power consumption and bandwidth. Here we propose and realize a silicon photonic 2×2 elementary switch based on a split waveguide crossing (SWX) consisting of two halves.

View Article and Find Full Text PDF

Cantilever-Enhanced Fiber-Optic Photoacoustic Spectrophone for Low-Pressure Gas Detection.

Anal Chem

January 2025

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning, China.

A cantilever-enhanced fiber-optic photoacoustic (PA) spectrophone is reported for trace gas detection at a low-pressure environment. A cantilever-based fiber-optic Fabry-Perot (F-P) interferometer (FPI) is utilized for simultaneous measurement of air pressure and PA pressure. Since the cantilever resonance frequency follows air pressure linearly, the fundamental frequency intensity modulation (1-IM) technique is applied to scan the frequency response of the solid PA signal from tube wall absorption for tracking the cantilever resonance frequency in real time.

View Article and Find Full Text PDF

Sensing Technologies for Outdoor/Indoor Farming.

Biosensors (Basel)

December 2024

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.

To face the increasing requirement for grains as the global population continues to grow, improving both crop yield and quality has become essential. Plant health directly impacts crop quality and yield, making the development of plant health-monitoring technologies essential. Variable sensing technologies for outdoor/indoor farming based on different working principles have emerged as important tools for monitoring plants and their microclimates.

View Article and Find Full Text PDF

Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers.

Adv Mater

December 2024

Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia.

Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O in pMUTs. Despite its potential, the integration of BiFeO thin films into pMUTs has been hindered by poling issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!