Background: Obesity is rapidly becoming one of the world's most critical health care concerns. Comorbidities accompanying excess weight include cardiovascular disease, diabetes, and certain cancers. These comorbidities result in greater hospitalization and other health care-related costs. Economic impacts are likely to be felt more acutely in developing countries, where obesity rates continue to rise and health care resources are already insufficient. Some of the more effective treatments are invasive and expensive surgeries, which some economies in the world cannot afford to offer to a broad population. Pharmacological therapies are needed to supplement treatment options for patients who cannot, or will not, undergo surgical treatment. However, the few drug therapies currently available have either limited efficacy or safety concerns. A possible exception has been glucagon-like peptide-1 analogs, although these have shown a number of adverse events. New drug therapies that are safe and produce robust weight loss are needed.
Scope Of Review: Herein, we review the role of growth differentiation factor 15 (GDF15) in feeding behavior and obesity, summarize some of the new and exciting biological discoveries around signaling pathways and tissue sites of action, and highlight initial efforts to develop GDF15-based therapies suitable for inducing weight loss in humans.
Major Conclusions: Within the last several years, great strides have been made in understanding the biology of GDF15. Recent developments include identification of an endogenous receptor, biological localization of the receptor system, impact on energy homeostasis, and identification of molecules suitable for administration to humans as anti-obesity treatments. New and exciting research on GDF15 suggests that it holds promise as a novel obesity treatment as new molecules progress toward clinical development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085570 | PMC |
http://dx.doi.org/10.1016/j.molmet.2020.101117 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFEnviron Technol
January 2025
Centre for Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India.
Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China.
Introduction: Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!