Synthesis and evaluation of new dinitrobenzamide mustards in human prostate cancer.

Bioorg Med Chem Lett

Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, United States; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States; Eppley Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198, United States. Electronic address:

Published: January 2021

Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we have reported the design and synthesis of a series of dinitrobenzamide mustards (DNBM) based on the PR-104A hypoxia-selective prodrug. Specifically, we explored the impact of various leaving groups and the introduction of a carboxylic acid group on the biological performance of the DNBM constructs. Once in hand, the Log D values, cytotoxicity in PC-3 and DU-145 human prostate cancer cells lines and the hypoxia selectivities of the DNBM analogs were examined. Overall, the DNBM constructs were found to be tolerant to modifications with none of the explored modifications substantially degrading the cytotoxic potential of the constructs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765247PMC
http://dx.doi.org/10.1016/j.bmcl.2020.127697DOI Listing

Publication Analysis

Top Keywords

dinitrobenzamide mustards
8
human prostate
8
prostate cancer
8
dnbm constructs
8
synthesis evaluation
4
evaluation dinitrobenzamide
4
mustards human
4
cancer tumor
4
tumor hypoxia
4
hypoxia explored
4

Similar Publications

Directed enzyme prodrug therapy is a highly promising anti-cancer strategy. However, the current technology is limited by inefficient prodrug activation and the dose-limiting toxicity associated with the prodrugs being tested; to overcome these limitations, the dinitrobenzamide mustard prodrugs, PR-104A and SN27686, have been developed. The present study will assess both of these prodrugs for their potential uses in a novel magnetic-nanoparticle directed enzyme prodrug therapy strategy by determining their kinetic parameters, assessing the products formed during enzymatic reduction using HPLC and finally their ability to cause cell death in the ovarian cancer cell line, SK-OV-3.

View Article and Find Full Text PDF

While delivery of chemotherapeutics to cancer cells by nanomedicines can improve therapeutic outcomes, many fail due to the low drug loading (DL), poor cellular uptake and endosomal entrapment. This study investigated the potential to overcome these limitations using pH-sensitive liposomes (PSL) empowered by the use of calcium acetate. An acidic dinitrobenzamide mustard prodrug SN25860 was used as a model drug, with non pH-sensitive liposomes (NPSL) as a reference.

View Article and Find Full Text PDF

Synthesis and evaluation of new dinitrobenzamide mustards in human prostate cancer.

Bioorg Med Chem Lett

January 2021

Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, United States; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States; Eppley Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198, United States. Electronic address:

Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we have reported the design and synthesis of a series of dinitrobenzamide mustards (DNBM) based on the PR-104A hypoxia-selective prodrug. Specifically, we explored the impact of various leaving groups and the introduction of a carboxylic acid group on the biological performance of the DNBM constructs.

View Article and Find Full Text PDF

Evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative vector for bacterial-directed enzyme-prodrug therapy.

Biochem Pharmacol

December 2018

School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand. Electronic address:

Gene-directed enzyme-prodrug therapy (GDEPT) employs tumour-tropic vectors including viruses and bacteria to deliver a genetically-encoded prodrug-converting enzyme to the tumour environment, thereby sensitising the tumour to the prodrug. Nitroreductases, able to activate a range of promising nitroaromatic prodrugs to genotoxic metabolites, are of great interest for GDEPT. The bystander effect (cell-to-cell transfer of activated prodrug metabolites) has been quantified for some nitroaromatic prodrugs in mixed multilayer human cell cultures, however while these provide a good model for viral DEPT (VDEPT) they do not inform on the ability of these prodrug metabolites to exit bacterial vectors (relevant to bacterial-DEPT (BDEPT)).

View Article and Find Full Text PDF

Intra-tumor heterogeneity represents a major barrier to anti-cancer therapies. One strategy to minimize this limitation relies on bystander effects via diffusion of cytotoxins from targeted cells. Hypoxia-activated prodrugs (HAPs) have the potential to exploit hypoxia in this way, but robust methods for measuring bystander effects are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!