Antioxidant and antimicrobial wound dressings are the most favorable for acute and chronic wounds treatment. Herein, we formulated a multifunctional polyelectrolyte wound dressing membrane on the basis of chitosan (Ch) and hyaluronan (HA) enhanced by phosphatidylcholine dihydroquercetin (PCDQ). Physicochemical properties and microstructures of fabricated films were investigated adopting Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscope (SEM). Furthermore, water uptakes, wettability profiles, surface roughness, and mechanical characteristics of the developed membranes were studied. The developed wound dressing revealed free radical scavenging potency, hemocompatibility with a tendency to enhance blood clotting. Furthermore, incorporation of PCDQ significantly promoted the antibacterial and anti-inflammatory activities of Ch/HA/PCDQ. Moreover, Ch/HA/PCDQ films exhibited cellular compatibility towards mouse fibroblast cells. The capability of Ch/HA/PCDQ to promote wound healing was evaluated using adult Wistar albino female rats. The in vivo findings demonstrated that Ch/HA/PCDQ films significantly ameliorated mouse full-thickness wounds as evidenced by a reduction in the wound area. Moreover, histological examinations of wounds dressed with Ch/HA/PCDQ illustrated a prominent re-epithelialization compared with wounds handled with the cotton gauze and Ch/HA dressings, exposing the efficiency of PCDQ. These findings emphasized that a Ch/HA/PCDQ membrane has outstanding potential for wound healing and skin regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.11.119DOI Listing

Publication Analysis

Top Keywords

wound dressing
12
polyelectrolyte wound
8
ch/ha/pcdq films
8
wound healing
8
wound
7
ch/ha/pcdq
6
antioxidant antibacterial
4
antibacterial polyelectrolyte
4
dressing based
4
based chitosan/hyaluronan/phosphatidylcholine
4

Similar Publications

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.

View Article and Find Full Text PDF

Antioxidant effects of Gastrodia elata polysaccharide-based hydrogels loaded with puerarin/gelatin microspheres for D-galactose-induced aging-skin wound healing.

Int J Biol Macromol

January 2025

College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China. Electronic address:

The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds.

View Article and Find Full Text PDF

Gelatinase-responsive core-shell nanofiber membranes for anti-adhesion applications.

Int J Biol Macromol

January 2025

MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

Dressings are prone to adhering to new tissues, leading to secondary harm to the wound during dressing replacement. To address this issue, many strategies have been proposed to endow dressings with anti-adhesive functions. However, the introduction of exogenous agents or stimuli is always needed, and difficulty in achieving adaptive removal is also present.

View Article and Find Full Text PDF

Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing.

Biomaterials

December 2024

State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Persistent inflammation is a major cause of diabetic wounds that are difficult to heal. This is manifested in diabetic wounds with excessive reactive oxygen clusters (ROS), advanced glycation end products (AGE) and other inflammatory factors, and difficulty in polarizing macrophages toward inhibiting inflammation. Berberine is a natural plant molecule that inhibits inflammation; however, its low solubility limits its biological function through cytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!