Small molecules inhibitors of neuraminidases (NAs) are ones of the most prospective molecules proposed for the treatment of influenza viruses. The determination of their inhibition activity in vitro is an important step during the development of antiviral drugs. However, the analytical methods typically used for the evaluation of NA activity and inhibition (fluorescence-based assays using MUNANA substrate or thiobarbituric acid assay, TBA) may suffer from interferences caused by tested inhibitors as signal quenching or self-fluorescence, moreover in TBA are used toxic and carcinogenic reagents. The determination of the NA activity can be effectively performed by alternative methods based on lectin - glycan recognition, usually as enzyme-linked lectin assay (ELLA). We have adapted the ELLA assay to a lectin-based assay in a microplate format with fluorescence detection for determination of NA inhibitory activity. We optimized our protocol and the developed method was tested using four different small molecule NA inhibitors or potential NA inhibitors (DANA, zanamivir, quercetin and α-mangostin) with three bacterial NAs (from Clostridium perfringens, Vibrio cholerae and Arthrobacter ureafaciens), and the IC values for NA inhibitors were determined. The inhibition effect of DANA was observed for all 3 tested NAs (IC = 10.1 μM for V. cholerae, 13.4 μM for C. perfringens and 402.9 μM for A. ureafaciens, respectively) and of Zanamivir only for NA from V. cholerae (IC = 101.9 μM). For both quercetin and α-mangostin, no inhibition effect to the tested NAs was observed. The main advantages of herein described method are good sensitivity due to fluorescent signal detection, the absence of the interference caused by fluorescent signal quenching by tested inhibitors, the use of natural substrates (glycoproteins) and the avoiding the use of toxic reagents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2020.11.016 | DOI Listing |
Bioconjug Chem
December 2024
acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria.
The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection.
View Article and Find Full Text PDFESC Heart Fail
November 2024
Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
Background: Cardiac remodelling, a crucial aspect of heart failure, is commonly investigated in preclinical models by quantifying cardiomyocyte cross-sectional area (CSA) and microvascular density (MVD) via histological methods, such as immunohistochemistry. To achieve this, optimized protocols are needed, and the species specificity is dependent on the antibody used. Lectin histochemistry offers several advantages compared to antibody-based immunohistochemistry, including as cost-effectiveness and cross-species applicability.
View Article and Find Full Text PDFBrain Commun
October 2024
Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
Early detection of Alzheimer's disease is vital for timely treatment. Existing biomarkers for Alzheimer's disease reflect amyloid- and tau-related pathology, but it is unknown whether the disease can be detected before cerebral amyloidosis is observed. N-glycosylation has been suggested as an upstream regulator of both amyloid and tau pathology, and levels of the N-glycan structure bisecting N-acetylglucosamine (GlcNAc) correlate with tau in blood and CSF already at pre-clinical stages of the disease.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France. Electronic address:
Human chorionic gonadotropin (hCG) is a dimeric, highly glycosylated hormone with a total of 4 N- and 4 O-glycosylation sites in its two subunits, hCGα and hCGβ. Recently, we developed a novel nano liquid chromatography coupled to high resolution mass spectrometry (nanoLC-HRMS) method for the analysis and thus the detection of the intact glycoforms of hCG. Here, a sorbent functionalized with the Jacalin lectin was evaluated in solid-phase extraction (SPE) for its potential to fractionate the hCG glycoforms prior to their nanoLC-HRMS analysis at the intact level, which may facilitate the detection of low-abundance glycoforms and may lead to a more detailed characterization of the hormone glycosylation.
View Article and Find Full Text PDFHeliyon
October 2024
VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Viet Nam.
Biosensors have emerged as a pivotal technology in the biomedical field, significantly enhancing the rapidity and precision of biomolecule detection. These advancements are instrumental in refining diagnostic processes, optimizing treatments, and monitoring diseases more effectively. Central to the development of highly sensitive, selective, and stable biosensors are the bioreceptor and transducer components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!