Methamphetamine pre-exposure induces steeper escalation of methamphetamine self-administration with consequent alterations in hippocampal glutamate AMPA receptor mRNAs.

Eur J Pharmacol

Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA. Electronic address:

Published: December 2020

AI Article Synopsis

Article Abstract

Methamphetamine use disorder (MUD) is often modeled using rodent self-administration (SA) experiments. Noncontingent injections of a drug given to rodents before self-administration training can increase drug SA. In the present study, we injected methamphetamine before putting rats through methamphetamine SA to investigate SA escalation. We also measured consequent changes in the expression of glutamate receptors in the hippocampus. Experimental groups included rats that received the methamphetamine injection prior to self-administration (MM) and those that received a prior saline injection before they underwent methamphetamine SA (SM). After SA training, rats also underwent tests of relapse potentials at one day and one month after withdrawal from methamphetamine SA. We used qPCR to identify potential changes in mRNA expression of AMPA, NMDA, and mGluR glutamate receptors. MM rats showed greater escalated methamphetamine intake in comparison to SM animals. There were no differences in incubation of methamphetamine craving between the two groups. In the hippocampus, MM rats showed decreased levels of GluA2 and GluA3 mRNAs in comparison to controls and of GluN2c mRNA in comparison to SM rats. In addition, SM rats had increased mGluR3 mRNA levels in comparison to control and MM rats. These data implicate hippocampal glutamate receptors in the longterm effects of methamphetamine. Further studies are necessary to identify the specific role that changes in the expression of these receptors might play in escalated intake of methamphetamine by human users.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719603PMC
http://dx.doi.org/10.1016/j.ejphar.2020.173732DOI Listing

Publication Analysis

Top Keywords

methamphetamine
12
glutamate receptors
12
hippocampal glutamate
8
rats
8
changes expression
8
methamphetamine pre-exposure
4
pre-exposure induces
4
induces steeper
4
steeper escalation
4
escalation methamphetamine
4

Similar Publications

Polymer-based vaccines for substance use disorders: Targeting ketamine and methamphetamine with protein-free hyperbranched polyethyleneimine carriers.

Eur J Med Chem

January 2025

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:

Substance use disorders (SUDs) present a critical global health challenge, as current treatment options often prove insufficient, particularly for substances like ketamine and methamphetamine. In this study, we developed a novel immunotherapeutic strategy utilizing protein-free, polymer-based vaccines, with hyperbranched polyethylenimine (Hb-PEI) as a carrier to enhance immune specificity and remove the production of non-specific antibodies. Haptens for ketamine and methamphetamine were covalently conjugated to the Hb-PEI carrier, along with the Toll-like receptor (TLR) 7/8 agonist 1V209, to stimulate targeted humoral immune responses.

View Article and Find Full Text PDF

Background: Despite increasing fatal stimulant poisoning in the United States, little is understood about the mechanism of death. The psychological autopsy (PA) has long been used to distinguish the manner of death in equivocal cases, including opioid overdose, but has not been used to explicitly explore stimulant mortality.

Objective: We aimed to develop and implement a large PA study to identify antecedents of fatal stimulant poisoning, seeking to maximize data gathering and ethical interactions during the collateral interviews.

View Article and Find Full Text PDF

3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.

View Article and Find Full Text PDF

The role of the nucleus accumbens (NAc) core in determining the valence of innately rewarding saccharin solution intake, methamphetamine (MAMPH)-induced conditioned taste aversion (CTA), and conditioned place preference (CPP) reward remains unclear. The present study utilized the "pre- and post-association" experimental paradigm (2010) to test whether the rewarding and aversive properties of MAMPH can be modulated by an N-methyl-D-aspartic acid (NMDA) lesion in the NAc core. Moreover, it tested how an NAc core NMDA lesion affected the innate reward of saccharin solution intake.

View Article and Find Full Text PDF

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!